
Program Comprehension Does Not Primarily Rely On the
Language Centers of the Human Brain

Shashank Srikant∗ Anna A. Ivanova† Yotaro Sueoka†

Hope H. Kean† Riva Dhamala‡ Evelina Fedorenko†

Marina U. Bers‡ Una-May O’Reilly∗

ABSTRACT
Our goal is to identify brain regions involved in comprehending
computer programs.We use functional magnetic resonance imaging
(fMRI) to investigate two candidate systems of brain regions which
may support this – the Multiple Demand (MD) system, known to
respond to a range of cognitively demanding tasks, and the Lan-
guage system, known to primarily respond to language stimuli.
We devise experiment conditions to isolate the act of code com-
prehension, and employ a state-of-the-art method to locate brain
systems of interest. We administer these experiments in Python
(24 participants) and ScratchJr (19 participants) - which provides
a visual interface to programming, thus eliminating the effect of
text in code comprehension. From this robust experiment setup, we
find that the Language system is not consistently involved in code
comprehension, while the MD system is. Further, we find no other
brain regions beyond those in the MD system to be responsive to
code. We also find that variable names, the control flow used in
the program, and the types of operations performed do not affect
brain responses. We discuss the implications of our findings on the
software engineering and CS education communities.

KEYWORDS
Neuroimaging, fMRI, Human brain, Code comprehension, Lan-
guage system, Multiple Demand system, Human factors, Python,
ScratchJr

ACM Reference Format:
Shashank Srikant, Anna A. Ivanova, Yotaro Sueoka, Hope H. Kean, Riva
Dhamala, Evelina Fedorenko, Marina U. Bers, and Una-May O’Reilly. 2018.
Program Comprehension Does Not Primarily Rely On the Language Centers
of the Human Brain. In Neuroscience of program comprehension. ACM, New
York, NY, USA, 16 pages. https://doi.org/10.1145/1122445.1122456

∗ CSAIL, MIT † BCS and McGovern Institute for Brain Research, MIT ‡ Eliot-
Pearson Department of Child Study and Human Development, Tufts University Cor-
respondence to: shash@mit.edu, unamay@csail.mit.edu

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Woodstock ’18, June 03–05, 2020, CSAIL, MIT
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
Reading and understanding computer programs (code) has been
estimated to consume nearly 60% of a software professional’s time
[58]. Yet, we understand little of how we cognitively accomplish it,
making this an open question in science. Extending seminal prece-
dents [27, 54], we attempt in this work to study and establish the
regions of the brain that are involved in comprehending computer
code.

The recency of code comprehension as a cognitive skill suggests
that brain regions which specialize in supporting other cognitive
activities likely also support code comprehension. Given its asso-
ciation with logic and problem solving, code comprehension can
arguably be handled by regions responsible for working memory
and cognitive control, or those involved in math and logic. Simi-
larly, code and natural language share many common properties.
They possess similar syntactic and semantic structures, and hier-
archically compose to convey meaningful information – in both
code and text, tokens are associated to form statements, which
are further associated to form an entire code or document, which
results in meaning being associated with the artifact [25]. Arguably,
regions of the brain involved in processing language can support
code comprehension.

Neuroimaging research is well positioned to address which re-
gions are involved in code comprehension. Techniques such as
functional magnetic resonance imaging (fMRI) measure brain activ-
ity when performing cognitive tasks like reading or hearing music.
Brain regions whose functions have been well established, like
language or music centers, responding to a new task, like code com-
prehension, can indicate the cognitive processes likely associated
with that task [43].

In this work, we use fMRI to study how code-reading related
tasks engage two known systems of brain regions – the Multiple
Demand (MD) and Language systems (details in Section 3). While
previous neuroimaging studies have also investigated brain regions
involved in code comprehension, their results remain inconclu-
sive. They provide evidence for activity in regions that roughly
correspond to the MD system [27, 34, 42, 54, 55], as well as in re-
gions resembling the Language system [54, 55]. Importantly, these
studies do not distinguish the act of code comprehension from
other code-reading related activities like mentally simulating code.
Further, most do not quantify brain responses, and compare them
to responses to other tasks associated with working memory or
language to meaningfully interpret their observations. We review
these works in Sections 2 and contrast their design choices to ours
in Section 4.

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

Woodstock ’18, June 03–05, 2020, CSAIL, MIT Shashank Srikant, et. al.

Our contributions in this work are twofold. First, we design
novel experiments and introduce improved methods to identify
brain regions involved in code comprehension. Second, we present
a new set of results which adds to our current understanding of the
cognitive bases of code comprehension. We summarize our design
and method contributions below. See Section 6 for details on our
results.
• We offer a clearer definition of code comprehension, and design
experiment conditions to isolate and measure it.
• We use a state-of-the-art procedure to determine which known,
well-characterized brain systems respond to code comprehension.
• We test our experiments in two programming languages - Python
and ScratchJr, a programming systemwith a fully visual interface,
on a group of 24 and 19 participants respectively. Using ScratchJr
enables measuring the effect of text on code comprehension,
and additionally helps validate the generalizability of our results.
Prior studies have experimented only with one programming
language.
• We ensure that the observations we make generalize to different
code properties like control flow (sequential programs, loops,
conditionals), or types of operations performed (string, math
operations).
• We additionally investigate whether brain activity corresponding
to code in the Language system is a result of descriptive variable
names used in codes.
• We make our code, stimuli, and brain data publicly available
for the community to reuse and extend. Link - https://anonymous.
4open.science/r/9fa26dd4-2011-4c3c-8739-fbd43a068244/

2 RELATEDWORK
The question of whether there exist specialized regions in the hu-
man brain which are exclusive to specific cognitive functions goes
back to Paul Broca’s investigations of language understanding in
the 1850s [31]. Advances in technology to accurately measure neu-
ral activity in the last three decades have revealed the existence of
specialized regions for a variety of cognitive functions like language
processing, face recognition, navigation etc. [39]

The use of neuroimaging techniques to study the cognitive re-
sponses to programming has gained momentum recently. Prior
works have investigated the neural processes involved in debugging
[14], variable tracking when reading programs [36, 46], semantic
cues or program layout [18, 51], program generation [41], manip-
ulating data structures [34], biases in code review processes [33],
and programming expertise [27, 35, 48].

Relevant to our scope are works which investigate regions of
the brain involved in comprehending code (as opposed to writing
code, or any other coding-related activity).

Siegmund et. al. [54], an influential work which pointed the
community’s attention to this topic, investigate the question of
which regions in the brain are involved in code comprehension.
They present two sets of stimuli to 17 participants in an fMRI study.
The first requires participants to read through snippets of code and
determine their outputs. The second requires them to read code
snippets with syntax errors and suggest fixes. The authors contrast
activations from these two sets of stimuli, both of which correspond
to code comprehension activity in the brain, to a baseline of no

activity. They show parts of this contrast to lie in the Broca’s region
(language centers) as defined by Brodmann’s areas [12].

Floyd et. al. [27] pose a different primary research question. They
investigate, on a larger sample of 29 participants, whether it is pos-
sible to distinguish the act of program comprehension from English
sentence comprehension using brain activity measurements. Their
decoding experiments show that neural representations for code
are unique and different from language. As a secondary result, they
do comment on brain regions involved, and partially confirm Sieg-
mund et. al.’s findings. In their design, they use a baseline contrast
of an English comprehension task and two code-reading tasks.

Liu et. al. [42] very recently showed that code comprehension
has very low overlap with the language centers of the brain, in line
with the results we present in this work. They present 17 expert
programmers with two code-related tasks - the first is similar to
Siegmund et. al., where participants determine code output. The
second requires participants to memorize what they call ‘fake code’
– code snippets with scrambled tokens in each line – and confirm
the presence of a specific substring. They further administer math,
logic, and language tasks to locate brain regions involved in these
functions in every participant. They report an overlap of code activ-
ity with regions belonging to the MD system but not the language
centers.

We pose the same question that Siegmund et. al. and Liu et. al.
study. We differ though in our experiment design and workflow.
We compare our design choices to these works in detail in Section
4. We shall see that this leads to a different set of conclusions than
those of Siegmund et. al.

3 BACKGROUND
Weprovide a brief background on fMRI studies, what is measured by
such scanning machines, and the regions of the brain we investigate.

3.1 fMRI studies
Functional magnetic resonance imaging (fMRI) is typically used
to identify regions of the brain which respond to any cognitive
task (comprehending code, in our case). MRI machines can mark
out and show brain responses in the order of a million voxels
while sampling every few seconds [28]. A voxel is roughly the 3-
dimensional equivalent of a pixel, and spans a few cubic millimeters
of our brains.

When a brain region is involved in a cognitive task, blood flows
into the region to aid its processing. An MRI machine measures
this change in blood-flow, and reports BOLD (blood oxygen level
dependent) values sampled at the machine’s frequency. Following
common practice, the parameters of a general linear model, fit to
these time-varying values, are used as a metric for brain activity.
We provide details in Section 5.

3.2 Regions of Interest (ROIs)
We investigate whether two well-studied systems of brain regions
– the MD system and the Language system, which we know how
to locate, are also activated when we comprehend code. A region
(also referred to as parcel) here denotes a contiguous chunk of brain
mass involved in a cognitive task. A system of regions (also referred

https://anonymous.4open.science/r/9fa26dd4-2011-4c3c-8739-fbd43a068244/
https://anonymous.4open.science/r/9fa26dd4-2011-4c3c-8739-fbd43a068244/

Program Comprehension Does Not Primarily Rely On the Language Centers of the Human Brain Woodstock ’18, June 03–05, 2020, CSAIL, MIT

to as a network) can comprise multiple disjoint (at the cortical level)
regions, all involved in the same cognitive task.

Figure 1: The Multiple demand (MD) system and Language
system highlighted in a neurotypical adult brain. These two
systems span multiple, closely situated regions in the brain,
and have been established to have very different response
profiles. What is conventionally referred to as Broca’s re-
gion includes portions of both these systems [21].

Multiple Demand (MD) system. Since programming conceiv-
ably involves arithmetic and general logic skills, we investigate
whether the Multiple Demand system [16], the most prominent
system known to support these skills, is activated. Generally lo-
cated in the prefrontal and parietal areas of the brain, this system of
regions is known to be domain-agnostic, and is activated in a host
of tasks requiring working memory and general problem solving
skills, including math and logic [4, 16].

Language system. Another possible candidate for processing
code is the Language system. These regions have been identified to
respond to both comprehension and production of language across
modalities (written, speech, sign language), respond to typologi-
cally diverse languages (> 50 languages, from across 10 language
families), form a functionally integrated system, reliably and ro-
bustly track linguistic stimuli, and have been shown to be causally
important for language [9, 10, 15, 24, 45, 52].

Figure 1 shows approximate locations of these systems in a
neurotypical adult brain. These systems have been consistently
located roughly in the same parts of the brain across individuals
[23, 24]. While an ROI provides a set of broad regions observed to
be involved in a cognitive task across individuals, we further locate
functional ROIs (fROIs) – specific voxels within these broad regions
which respond to working memory and language respectively in
an individual. By doing this, we account for the exact anatomical
locations of these voxels, which vary across individuals. This is one
improved aspect of our experiment method over prior works. We
provide details on fROIs in Section 4.4.

4 EXPERIMENT DESIGN
We first provide a summary of our overall workflow. We follow
that with details on three key components of our experiment de-
sign: condition design - the various design choices we consider
in creating the code stimuli we show our participants, fMRI tasks
- the tasks participants respond to in an MRI machine which en-
able measuring brain activities, and processing fMRI data - how
we analyze participants’ fMRI data and quantify the effect of code
comprehension. In our description of these components, we also
contrast how they differ from previous works.

4.1 Experiment workflow - An overview
The first step of our workflow is to frame hypotheses and design
conditions which can test those hypotheses. These conditions in-
form the stimuli and tasks we present to human participants in an
MRI machine. Our goal is to observe the effect reading code has
on two regions of interest in our brains - the MD system and the
Language system. We first determine which voxels (fROIs) belong
to the MD and the Language systems in each participant. We do this
by getting participants to respond to localizer tasks – tasks which
have been shown to consistently activate the two systems [9, 24].
We then show participants stimuli corresponding to our own care-
fully designed code conditions, and we measure brain responses
to these conditions within the identified fROIs. The goal of analyz-
ing fMRI responses to our code conditions is to evaluate whether
they activate the fROIs as much as the localizer tasks. If they do
activate the regions as much, we infer that the fROIs are involved
in processing code. For example, if comprehending code activates
the Language system as much as comprehending English text (the
localizer task for the Language system), we then conclude that the
Language system is involved in processing code comprehension in
addition to processing language comprehension.

4.2 Condition design
Brain activity measurements for a given condition (e.g. response
to reading codes) can meaningfully be interpreted only relative
to another condition (e.g. response to reading plain text), i.e. by
contrasting two or more conditions. We describe the different con-
ditions we design and contrast in our work, and discuss them in
light of the design choices made by prior works.
Controlling for non-codes. The simplest condition pair to ob-
serve the effect of reading code is by contrasting codeswith non-codes
(notated as code > non-code in the cognitive neuroscience liter-
ature). Here, non-codes correspond to stimuli which participants
can comprehend despite not being code-like. In our study, they
correspond to statements in a natural language (English).

Our goal though is to push farther. We design conditions which
help isolate the effect of other factors which might alternatively
explain the activations we observe in different brain regions when
understanding code.
Controlling for code simulation. Arguably, the task of reading
code involves more than the act of code comprehension. To appreci-
ate why, consider the different cognitive steps involved in reading
and understanding code. On being presented code – 1) Retinal cells
are activated by the presence of characters in a program 2) The
visual system of our brain processes these characters. 3) Having
recognized the characters, our brain interprets tokens present in
the text. 4) Our brain groups tokens to recognize program state-
ments, and eventually groups these statements to form a mental
representation of the entire code, and understands its goal. 5) Our
brain executes or simulates it to derive its final output.

In our work, we do not study the effects of reading code on the
visual system (steps 1-2). We identify steps 3-4 as code comprehen-
sion, and step 5 as carrying out code simulation– which has also
been referred to as program tracing [56], and processing code content
[37]. For example, comprehending the statement x=10+20 refers
to associating this statement with the notion ‘x stores the sum of

Woodstock ’18, June 03–05, 2020, CSAIL, MIT Shashank Srikant, et. al.

Figure 2: (A) A code condition stimulus in Python and its equivalent sent condition, which describes the code stimulus in
words. sent controls for brain responses to code simulation. The difference in these conditions, code>sent, estimates code
comprehension. (B) An example code and sent stimulus in ScratchJr, a programming system with a visual interface. ScratchJr
allows to measure the effect of text in codes. (C) codeJ condition with Japanese variable names, which controls for the effect
of meaningful variable names. (D, E, F) Conditions that measure the effect of control-flow properties (for, if, seq) and type
of operations (math, str).

numbers 10 and 20’. Code simulation in this case refers to mentally
adding numbers 10 and 20 and realizing that x stores 30. We refer
to steps 3-5 collectively as code reading.

Step 5 can potentially dominate brain measurements made when
reading and understanding code. To factor out its effect, we offer the
following insight – it is possible to describe code in different ways
while retaining its code simulation operations. A code described in
sentences or as a flow diagram does not alter its operations. Draw-
ing on this insight, we design sentences whose content matches
our code conditions. We notate this condition as sent and the con-
trast as code > sent. See Figure 2.A. for an example. If the code
condition measures code comprehension and code simulation as the
dominant cognitive steps involved, the sent condition then ar-
guably measures natural language (sentences) processing and code
simulation. The difference in these two conditions code > sent
thus allows us to isolate and measure the act of code comprehension.
Controlling for variable names. If code comprehension is indeed
treated like language comprehension and the Language system
is found to respond to it, it is reasonable to question whether the
Language system responses are caused just by the presence of mean-
ingful variable names and not other aspects of the code. We control
for this possibility by replacing variable names with those which
mean nothing in that context. The responses to such codes can then
be attributed solely to code comprehension and not to the presence
of meaningful English words in the code. In our work, we chose
to rename variables with their Japanese equivalent names (written
out in the English script) and administer it to participants with no
knowledge of Japanese. We refer to this condition as codeJ. Figure
2.B shows the code in Figure 2.A instead with Japanese variable
names. We also account for the effect meaningful string literals (e.g.
x="hello") or meaningful keywords (for, if) may have, by design-
ing an equal number of stimuli without these artifacts (discussed
in the following point).
Effect of control flow and operations.We additionally investi-
gate whether brain activations to code are consistent across dif-
ferent code properties. This helps demonstrate the robustness of

our observations to common variations possible in code. We test
two such properties – control flow, and the types of operations. In
control flow, we test each of loops (for), conditional statements
(if), and sequential statements. See Figures 2.D, E, F for examples
of each of these conditions. We test two types of operations – math
and string. Figures 2.E, F show examples of math and str operations
respectively. Every stimulus in these conditions has exactly one
each of the three control structures, and one of the two data oper-
ations. This design also accounts for the presence of meaningful
string literals and keywords by allowing us to observe brain activ-
ity corresponding to conditions that do not contain these artifacts
(math, seq respectively).
Effect of text in codes.We experiment with the conditions we de-
scribe above in two programming languages – Python and ScratchJr.
ScratchJr is a programming system with a fully visual interface [7].
It is generally introduced to children as means to express them-
selves creatively, where the visual interface and intuitive drag-and-
drop features representing different programming constructs enable
them to code without relying on a language like English [8]. The
very nature of this visual interface allows us rule out the influence
of text on code comprehension. Figure 2.B shows an example. Further,
using ScratchJr as a second programming language helps validate
the generalizability of our findings. All prior works have evaluated
their findings only in one programming language.
Design choices by prior works. Floyd et. al. also use the basic
contrast code > non-code, but nothing more to isolate code com-
prehension. Siegmund et. al. instead contrast code > code with
syntax errors (Section 2). Codes with syntax errors are still codes,
and hence do not help differentiate activity in regions where non-
codes (natural language) are known to be processed. Further, the
code-with-syntax-errors condition likely measures aspects of
code comprehension, code simulation, and perhaps other skills spe-
cific to debugging and finding such errors. Thus, their contrast
does not fully isolate code comprehension. While Liu et. al. ensure
their code stimuli generalize to loops and conditions, their primary
contrast code > fake code also does not distinguish between code

Program Comprehension Does Not Primarily Rely On the Language Centers of the Human Brain Woodstock ’18, June 03–05, 2020, CSAIL, MIT

comprehension and code simulation. Their setup introduces the ad-
ditional effect of memorizing fake code which involves multiple
cognitive processes
Summary. To summarize, in our Python experiments, our overall
experiment design is a 3 × 3 × 2 study – 3 conditions - code, sent,
codeJ (Japanese variable names), and within each of these three
conditions, we further have 3 categories of control flow conditions,
and 2 categories of operations-related conditions. Since many of
these conditions are not applicable to ScratchJr (variable names, op-
eration types), we evaluate only the critical code > sent condition
in ScratchJr.

4.3 fMRI tasks
For each participant, in addition to presenting stimuli correspond-
ing to code-related conditions in an MRI machine, we present two
separate tasks to localize the two regions of interests in them. What
is central to a localizer task is its ability to strongly activate a region
of interest in every individual. It has been empirically established
that reading semantically well-formed sentences in any natural
language strongly activates the Language system, while perform-
ing spatial memory tasks strongly and distinctly activates the MD
system [23, 24]. We reuse these established localizer tasks in our
work. We provide details in Section 5.

We now describe how we use this localization information when
analyzing brain activity during code comprehension.

4.4 Locating fROIs and data analysis
We analyze brain data in the following five key steps. Our procedure
follows the Group-constrained Subject-Specific (GSS) method of
locating functional regions of interest (fROIs) that are activated
consistently across individuals [47].
1. Mapping to an exemplar brain structure. To normalize dif-
ferences in brain anatomies, each participant’s brain is spatially
transformed to an exemplar brain structure like the Montreal Neu-
rological Institute (MNI) template [57]. These spatially transformed
coordinates are used for subsequent analyses.
2. Selecting ROIs. Regions of interest (ROIs) mark out a set of
broad regions observed to be involved in a cognitive task across
individuals. For every participant, we use these regions as a starting
point, and look for voxels within them which respond to a cognitive
task. This helps avoid looking in regions which are not germane
to the task. For example, reading code will understandably also
activate the visual cortex, which is not of interest to our particular
study.

In our work, we reuse a set of 20 MD parcels (10 in each hemi-
sphere) and six Language parcels defined in prior works [23, 24].
These parcels have been curated by aggregating ∼200 participants’
brain responses to spatial working memory and language tasks
respectively. As an alternate, one could select ROIs from the parcels
defined by Brodmann’s areas [12], an atlas which maps regions of
an exemplar’s brain to cognitive functions.
3. Identifying fROIs. For every individual, a functional region of
interest (fROI) refers to a collection of voxels within an ROI which
respond to the cognitive task the ROI is involved in. Owing to dif-
ferences in anatomies, the specific set of voxels which respond to
a cognitive task (like spatial reasoning or language) varies across

individuals. ROIs, aggregated from across individuals, help narrow
down the search space to locate these specific voxels in every in-
dividual by pointing to a swath of regions known to respond to
the task. fROIs in turn identify specific voxels functionally involved
in the cognitive task. Localizer tasks (Section 4.3) for each system
help identify these voxels. By the end of this step, we establish in
each participant fROIs for the MD and the Language systems. We
provide details in Appendix 1.
4. Aggregate activation data within a participant.We use the
fROIs defined for the two systems in the previous step in all our
remaining experiment conditions. Specifically, we measure the ac-
tivations of our code conditions in the selected fROIs. At this stage,
we have at least two sets of activation measurements for each voxel
in an fROI – one corresponding to the localizer task, and the others
corresponding to the different code-related conditions. For each
fROI, we obtain a single response value per condition by averaging
the responses of all voxels within the fROI.
5. Aggregate activation data across participants. For each sys-
tem, we then evaluate whether the distribution of participant-level
responses to the code conditions is comparable to that of the lo-
calizer task. If it is, we conclude that the system is involved in
processing code conditions.
Multi-participant analysiswithout functional localizers.Among
prior works, Liu et. al. alone use localizer tasks to find task-selective
voxels in individual participants. However, they do not use ROIs
(step 2 above) and instead perform a whole-brain analysis, and re-
port overlaps as against measuring exact activations in fROIs. Their
setup coupled with their ambiguous condition design (discussed in
Section 4.2) makes it hard to infer brain regions accurately.

In fMRI studies which do not use localizer information, as in the
case of Siegmund et. al., Floyd et. al., and other works which have
studied different aspects of programming, the primary difference is
that ROIs are defined based on anatomy, and not on their function
(i.e. how they respond to localizer tasks). Concretely, this difference
arises in steps 3 and 4, where instead of aggregating activations
within an fROI, activations are estimated in each voxel across the
entire brain and aggregated across participants (also called the
group analysis procedure). The location of such aggregated active
voxels is then described using anatomical labels, such as Brodmann
areas [12]. This method has broadly been referred to as reverse
inference in neuroimaging studies [49].

The reverse inference method assumes that fROIs are spatially
fixed among individuals and can be uniquely located in the ex-
emplar brain structure. While reverse inference is not always a
concern, especially when the regions are anatomically well sepa-
rated and distinct (e.g. visual system vs. MD system), it has been
shown to yield inaccurate estimates in the measurements of the
closely situated MD and the Language systems [5, 11, 21, 22]. What
is referred to as the language region by Brodmann’s areas (areas
44 and 45) in one individual can instead refer to functional regions
belonging to the MD system in another individual, owing to dif-
ferences in individual anatomies [20, 22]. The GSS approach of
function-based ROI identification helps circumvent this potential
cause for inaccuracy.

Woodstock ’18, June 03–05, 2020, CSAIL, MIT Shashank Srikant, et. al.

5 EXPERIMENT PROCEDURE
We describe in brief our experiment procedure. We provide details
in Appendix A.

We recruited 24 participants for Experiment 1 (Python) and 19
participants for Experiment 2 (ScratchJr), with no overlap between
these groups. On the day of the scan, having provided consent,
participants spent 1.5 − 2 hours in the scanner. In Experiment 1, in
the week of their scheduled fMRI scan, each participant additionally
completed an assessment in Python to evaluate their fluency in it
(Appendix A.1).

Once in the scanner, a participant was presented with two lo-
calizer tasks, adopted from prior works [23, 24], to locate the MD
system and Language system respectively in their brain (Appen-
dix A.2). The MD system localizer task is a working memory task,
presented in two grades of difficulty - easy and hard. The Lan-
guage system task has two conditions - sentence reading (SR), and
non-word reading (NR). SR requires reading sentences which are
structurally and semantically meaningful. NR requires reading sen-
tences with pronounceable yet meaningless non-words (e.g. BIZBY
ACWORILLY BUSHU SNOOKI BILIBOP KUKEE). These two conditions
serve as references to measure other experiment conditions against
– the Language system has been shown to respond strongly to SR
while only minimally to NR.

Participants were also presented with coding tasks (Appendix
A.3). The tasks shown were balanced between the three condi-
tions - codeE (code with semantically meaningful variable names
in English), sent (sentences describing programs, controlled for
code simulation), and codeJ (code with Japanese variable names).
Each participant saw 72 problems, 24 from each of the three condi-
tions. Each of these set of 24 problems further had an equal number
of control-flow and operations-related conditions. Any given par-
ticipant saw only one of the three versions of a problem (Appendix
A.4).

The data from the localizer scans was used to locate the fROIs in
the MD and the Language systems in every participant (Appendix
A.5). We fit a general linear model to the time series brain activation
data generated as a response to our different tasks. The parameters
of this model (β) are used as a metric for brain activity (BOLD) in
all our analyses (Appendix A.6).

6 RESULTS
We present our questions and their corresponding results here. In
our results, we discuss the neural activations in different regions of
the brain (Figures 3.A, 3.B). The x-axis in these plots corresponds
to the different conditions participants responded to, and the y-
axis represents activation strength (β values, see Appendix A.6
for details). Each dot in each bar corresponds to one participant’s
aggregate activity in the fROIs localized in them. When reporting
results of a contrast between any two conditions, we measure the
difference in the average β values (∆β) and compute its associated
p-value.

RQ 1. Does code reading activate the Multiple Demand
(MD) system?
Conditions contrasted. code, sentence reading,
non-word reading

We begin by investigating whether reading code, which involves
both code comprehension and code simulation, activates the MD
system. We do this by comparing the activations of our primary
code-related condition - code problems, to the localizer tasks for
the Language system - sentence reading and non-word reading. We
notate these conditions as CP, SR, and NR respectively in Figure
3.A, B. We evaluate two sets of fROIs in the MD system - one in each
hemisphere of the brain (Figure 3.A, B., left and center plots). From
the plots, we see both sentence reading and non-word reading, the
language localizer conditions, have minimal activations in the MD
system in both hemispheres. This is expected since the MD system
is not sensitive to language tasks [9]. We find that code problems,
which account for both code comprehension and code simulation,
activate fROIs in both hemispheres of the MD system consistently
and significantly more than the baselines in both our experiments
(Python: ∆β= 2.17, p < 0.001; ScratchJr: ∆β= 1.23, p < 0.001). This
suggests that the MD system is involved in reading code.

We confirm whether these responses are consistent across code
properties, which will establish its robustness to the variations pos-
sible in code. We test two properties – control-flow (sequential, for,
if), and types of data manipulated in them (string, math operations)
in Python. We observe strong responses regardless of the type of
operations and control flow (Figure 3.C; y-axis is response to CP).
We thus conclude that the responses in the MD system to code
problems were not a result of any one particular type of problem,
or mental operations related to a particular control flow.

This clearly identifies and establishes the role of the MD system
in code reading. Prior works did not identify and study this system
of regions.

RQ 1 result. Yes, code reading activates the MD system. Its
responses are independent of the control-flow operations
and types of data operations present in codes.

RQ 2. Does code comprehension activate the Multiple De-
mand (MD) system?
Conditions contrasted. code, sent, sentence reading,
non-word reading

Since we find that code reading activates the MD system, we
investigate whether these were responses to code comprehension or
code simulation. To answer this, we study the effect of both our code-
related conditions – code problems (CP), and sentence problems
which match the code problems for their content (SP). We find that
sentence problems, which measure only code simulation and not
code comprehension, activate the MD system significantly greater
than the language localizer baselines in both hemispheres only for
Python (left: ∆β= 1.51, p < 0.001; right: ∆β= 0.78, p < 0.001).
This activation is not significant for ScratchJr (left: ∆β= 0.09, p
= 0.93; right:∆β= −0.40, p= 0.004), suggesting that code simulation

Program Comprehension Does Not Primarily Rely On the Language Centers of the Human Brain Woodstock ’18, June 03–05, 2020, CSAIL, MIT

Figure 3: (A, B) Brain activations in the MD system left hemisphere (MD system L), MD system right hemisphere (MD system
R), and the Language system.Wemeasure responses to four conditions – codes (CP), sentences matching the code’s operations
(SP), Sentence reading (SR), andNon-words reading (NR).We experiment in Python (N=24) and ScratchJr (N=19). Each dot in the
bars corresponds to aggregate data from one participant. *** indicates p < 0.001, n.s. - not significant (C) MD system responses
to two code properties – operation type (math, string operations), and control-flow (sequential, loop (for), conditional (if)) (D)
Language system responses to variable names in English (codeE) and Japanese (codeJ) (E) Correlation of responses in the MD
and the Language systems to proficiency in Python (top) and ScratchJr (bottom).

is not consistently supported by the MD. However, we find that
code problems, which measure both code comprehension and code
simulation, strongly activate fROIs in both hemispheres. This is
despite sentence problems taking slightly longer on average to
respond to (Appendix B.2). We hence find thatCP strongly activates
the MD system and SP does not. This implies that the difference
CP > SP, which measures code comprehension, strongly activates it.
This is strong evidence for the MD system’s consistent and robust
activation to code comprehension, and shows it is not just a response
to the underlying code simulation operations.

We investigate further for any hemispheric bias towards code
comprehension. Previous works have shown that math and logic
problems typically activate the MD system in the left-hemisphere
of the brain [3, 4]. We did not find any such bias in Python (MD-
L plot, Figure 3.A). In ScratchJr, we observe stronger responses
in the right hemisphere (∆β= 0.57, p < 0.001; MD-R plot, 3.B),
perhaps reflecting a known bias of the right-hemisphere towards
visuo-spatial processing [53].

Follow up analyses of activity within individual regions within
the MD system showed that 17 of the 20 fROIs in the Python experi-
ment, and 14 of the 20 fROIs in the ScratchJr experiment responded
significantly more strongly to code problems than to sentence prob-
lems (details in Appendix B.1). This demonstrates code processing
is broadly distributed across the MD system and is not localized to
a particular subset of regions within it. Within this activated subset,
we evaluate whether any fROIs are selective to code problems in
comparison to other cognitively demanding tasks which activate
the MD system. We find none for ScratchJr, and three regions in
the frontal lobe (precentral-A, precentral-B, midFrontal) which ex-
hibit stronger responses to Python code problems than to the hard

working memory localizer task for the MD system. However, the
magnitude of code > sent in these regions (∆β= 1.03, 0.95, 0.97)
was comparable to the mean magnitude across all MD system fROIs
(average ∆β= 1.03), suggesting that the high response was caused
by the underlying code simulation rather than code comprehension.
We conclude that code comprehension is broadly supported by the
MD system, and no specific regions in the MD system are function-
ally specialized for it.

These new results further establish the role of the MD system
in processing code comprehension, which we narrowly and clearly
define in this work.

RQ 2 result. Yes, code comprehension consistently acti-
vates the MD system. Unlike math and logic, it activates
fROIs in both the left and right hemispheres. In fact, no
specific fROI within the MD system specializes for code
comprehension, and it is instead broadly supported by the
entire system.

RQ 3. Does code reading activate the Language system?
Conditions contrasted. code, sent, sentence reading,
non-word reading

We investigate the Language system similarly for responses to
our code conditions. Figures 3.A, B (rightmost plot) show the aggre-
gate responses in the Language system to the two code conditions
and the two language localizer conditions described above. As ex-
pected of the localizers, we find the activations of sentence reading
to be significantly greater than non-word reading [9, 24]. Among

Woodstock ’18, June 03–05, 2020, CSAIL, MIT Shashank Srikant, et. al.

the code conditions, we find that sentence problems activate the
Language system as much as the sentence localizer task in both
Python and ScratchJr. This is again expected since sentence prob-
lems contain English sentences describing what the program does
(Figure 2.A). However, the responses to code problems were weaker
than responses to sentence problems in both experiments (Python:
∆β= 0.98, p < 0.001, ScratchJr: ∆β= 0.99, p < 0.001). This observa-
tion alone does not yield any insight on whether code activates the
Language system, and we hence compare these activations to the
localizer baseline non-word reading. Non-word reading is a lower
bound for activity in the Language system; this is the activity seen
in the Language system when it is not actively engaged in linguistic
interpretation. Responses to the code condition were stronger than
non-word reading only in the Python experiment (∆β= 0.78, p
< 0.001) but not in the ScratchJr experiment (∆β= 0.15, p= 0.29),
implying that code does not consistently activate the Language
system.

The result from this principled investigation of the Language
system is contrary to that of Siegmund et. al., who report the in-
volvement of the language system in addition to other brain regions.
We discuss this further in Section 7.

RQ 3 result. No, code reading does not consistently acti-
vate the Language system.

RQ 4. Do meaningful variable names affect the Language
system’s response to code?
Conditions contrasted. codeE, codeJ

Since we find that Python code activates the Language system
but ScratchJr does not, we investigate whether this is a consequence
of meaningful variable names present in codes. To study this ef-
fect, we had participants read half the Python code problems with
semantically meaningful variable names in English (codeE) and
the other half with Japanese variable names (codeJ), making them
semantically meaningless; 18 of the 24 participants reported no
knowledge of Japanese. In the Language system, we found no effect
of meaningful variable names (∆β= 0.03, p = 0.84) (Figure 3.D,
non-speakers), knowledge of Japanese (∆β= 0.03, p = 0.93) (Figure
3.D, speakers), nor any interaction between the two (∆β= 0.09, p
= 0.71), suggesting that the Language system response was not
affected by the presence of semantically meaningful variable names.
This result is surprising since the Language system has been shown
to be very sensitive to word meaning [6]. A possible explanation is
that participants do not fully engage with the words’ meanings to
solve problems.

RQ 4 result. Meaningful variable names do not affect the
Language system’s response to code.

RQ 5. Are there regions outside the MD system and Lan-
guage system that respond to code comprehension?

To search for regions responsive to code comprehension outside
the MD system and Language system, we perform a whole-brain
Group-constrained Subject Specific analysis. For both Python and
ScratchJr, we search for brain areas with activations where code >
sent. We then examine the response of such regions to code and
sentence problems (cross-validated with held-out data), as well as
to conditions from the two localizer experiments. In both experi-
ments, the discovered regions spatially resembled the MD system.
For Python, any region that responded to code also responded to
the spatial working memory task (MD system localizer). In case of
ScratchJr, some fROIs responded more strongly to code problems
than to the spatial working memory task; these fROIs were located
in early visual areas/ventral visual stream which likely responded
to low-level visual properties of ScratchJr code (which contains col-
orful icons, objects, etc.). These whole-brain analyses demonstrate
that the MD system responds robustly and consistently to code
comprehension, confirming the results of the fROI-based analyses
discussed in RQs 1 and 3. This further shows that fROI-based anal-
yses did not miss any non-visual regions outside the boundaries
of the MD and the Language systems that was activated by code
comprehension.

RQ 5 result. We found no code-selective regions outside
the MD and the Language systems.

RQ 6. Does expertise affect how the MD and the Language
systems respond to code comprehension?

We study the role of expertise by correlating responses within
each system with independently obtained proficiency scores for
participants of Experiment 1 (a 1-hour Python assessment module;
Appendix A.1) and with in-scanner accuracy scores for Experiment
2 participants. Figure 3.E plots the percentage proficiency scores
(x-axis) against code comprehension (code > sent). No correlations
were significant. However, due to a relatively low number of par-
ticipants (N = 24 and N = 19, respectively), these results should be
interpreted with caution.

RQ 6 result. We did not have enough data to observe the
effect of expertise on the MD and the Language systems’
responses to code comprehension.

7 DISCUSSION
We present a new set of results which improves our understanding
of the cognitive bases of program comprehension. We find that code
reading (which we identify to include both code comprehension and
code simulation) strongly activates only the MD system and not
the Language system. Despite their anatomical proximity in the
left-hemisphere of our brains, our work clearly distinguishes the
roles of both these systems by means of functional localizers.
MD system results. We find that the MD system consistently
processes code reading. We support our observations by showing
these activations generalize across two code properties - control
flow and data operations, suggesting that the system’s response is

Program Comprehension Does Not Primarily Rely On the Language Centers of the Human Brain Woodstock ’18, June 03–05, 2020, CSAIL, MIT

robust to variations in code. We further learn that the MD system
responds consistently to code comprehension. It also responds to
code simulation strongly in Python, but we see only a weak evidence
for it in ScratchJr, which needs to be investigated in future work. It
is reasonable to expect the MD system to process code reading, since
both code comprehension and simulation requires attention, working
memory, inhibitory control, planning, and general flexible relational
reasoning - cognitive processes long linked to the MD system [16,
17]. This finding also supports Liu et. al.’s recent results [42]. Since
no other regions outside the MD system responded to codes, we
posit this system stores code-specific knowledge in addition to
processing it. This knowledge likely includes concepts specific to a
programming language (e.g. the syntax marking an array in Java vs.
Python) and concepts shared across languages (loops, conditions).
Evidence from studies on processing mathematics and physics [4,
26] has shown that the MD system can store some domain-specific
representations in the long term, perhaps for evolutionarily late-
emerging and late-acquired domains of knowledge. In conclusion,
we identify a known brain system, which had previously not been
studied for its role in code reading tasks, to be involved in code
comprehension specifically.
Language system results. We importantly establish in this work
that code reading is not consistently processed by the Language
system. This is a new finding, and adds to the results from Sieg-
mund et. al. and Floyd et. al., while confirming results from Liu et.
al.. Siegmund et. al. report the involvement of the language centers
in code comprehension by showing evidence of left-lateralized brain
activity. While it is unclear whether their observations were tech-
nically from the Language system or the MD system, we suspect
that they observed code simulation and not code comprehension.
Additionally, and surprisingly, we find that the Language system
is insensitive to the presence of meaningful variable names. More
work is required to determine why the Language system showed
some activity in response to Python code.

The Language system does not respond consistently to code com-
prehension despite numerous similarities between code and natural
language. However, the lack of consistent Language system engage-
ment in code comprehension does not mean that the mechanisms
underlying language and code processing are completely different.
It is possible that both the MD and the Language systems have sim-
ilarly organized neural circuits that allow them to map a symbol to
a concept. However, the fact that we observed code-related activity
primarily in the MD system indicates that code comprehension does
not activate the same neural circuits as language, and needs to use
domain-general MD system circuits instead.

Having identified the regions activated when reading programs,
we discuss how our results affect the programming languages (PL),
software engineering (SE), and CS education (CS-Ed) communities.
Impact on the PL, SE, CS-Ed communities. To understand how
our results can be applied specifically to improving how we can
understand programs, we first establish the relationship between
two cognitive activities engaging the same brain system (in our
case - working memory tasks and code comprehension engaging the
MD system). A few studies have claimed that for any two cognitive
activities that share the same brain resources, training one activity
will lead to an improvement in the other [38, 44]. For example, if
language and music share and activate the same brain system, then

tools and approaches used to engage and train one activity should
be transferable to, and will lead to an improvement in the other.
Since the effects of training and improving one’s MD system are
not well understood, it is unclear whether training on cognitively
demanding non-coding tasks could improve our ability to read and
understand programs.

Based on the opposite conclusions presented in Siegmund et.
al., Portnoff et. al. [50] and similar other works suggest adopting a
“languages first" approach when teaching programming. Evidence
from our work does not support this claim, and we caution against
adopting practices that are used to teach natural languages for
programming just based on conclusions from recent neuroimaging
studies.

The Language system not being involved in code comprehen-
sion should not diminish the role of language in understanding
programs. The use of poorly named variables has been shown to
increase cognitive load [19], and non-native English speakers have
been found to often struggle with learning English-based program-
ming languages [30]. Future work should reconcile this disparity,
and aim to show how results from studies on cognition can aid
understanding programs.
ML models for code. Recent advances in machine learning (ML)
models trained on large corpora of programs have shown models’
ability to perform tasks like renaming functions, bug detection,
etc. [2]. Deep networks learn a ‘language model’ of programs, and
likely learn a generalized way to represent these programs. Do
these model-learned representations correspond to the representa-
tions (activation data) in the different fROIs from our study? Such
a correspondence may have far reaching implications. For instance,
if we can probe and isolate specific weights or layers that encode
loops and recursion in a recurrent model like seq2seq, code2seq,
or GPT-3, the existence of a correspondence between representa-
tions may help locate the encodings of loops and recursion in our
brains. Such a correspondence has recently been established be-
tween representations stored in the visual cortex and those learned
by deep convolutional networks for image processing and recog-
nition [13, 40, 59]. This promises to be a compelling direction for
future work.

8 THREATS TO VALIDITY
There are limitations to the results we report in this work. One
possible threat is posed by the tasks we designed – do our program-
ming tasks measure code comprehension and understanding? The
programs we present in this study are short snippets of procedural
code with limited program properties. They do not have complex
control and data dependencies generally seen in production-grade
programming projects. Properties like function calls, objects, types,
complex data, and state changes in the program are not included
either and should be studied in the future, building on the under-
standing of simpler snippets provided by our work. Further, we
study a very specific activity related to programming – reading
programs, and do not investigate other equally important aspects
like designing solutions, selecting appropriate data structures, and
writing programs.

In designing our code stimuli, having overtly informative vari-
ables names poses the risk of participants not going through all the

Woodstock ’18, June 03–05, 2020, CSAIL, MIT Shashank Srikant, et. al.

lines of code presented to them, and instead just guessing what the
code does by gleaning variable names. To avoid this, we constrain
our variable names to be informative and natural (as it would ap-
pear in a real codebase) to the extent they do not reveal fully the
intent of the entire code snippet. However, such a constraint does
not appear in actual coding scenarios. Disparate stimuli are a source
of possible confounds. If some conditions had disproportionately
longer code than others, it would be unclear if any trend we saw in
brain activations were a function of the condition, or such factors
like code length. In an attempt at avoiding this, we ensured that
the stimuli in our 3 × 3 × 2 conditions had similar code lengths and
overall response times. However, they are not all equal.

Expertise is also a potential confound which could affect the gen-
eralizability of the results we see. The majority of our participants
were recruited from a university setting and had roughly 3-6 years
of programming experience. While our participants’ experience
level was largely homogeneous in our study, expertise could inter-
act with brain functions associated with program comprehension,
as it does with other cognitive functions [1, 29, 32]. Accounting for
the role of expertise would require running these experiments on a
population with varying proficiencies.

Neuroimaging experiments generally risk lack of generalizability
of results owing to low sample sizes. In our work, the relatively

small sample sizes (N=24 for Experiment 1, and N=19 for Exper-
iment 2) affect only our group analyses (of comparing aggregate
information across participants). Although these sample sizes are
the norm in the neuroimaging community, the robustness of our
results are limited by the small number of participants. We see this
as an opportunity for authors from similar neuroimaging studies to
collaborate to analyze data across these works, which will also help
amortize the high costs of carrying out this type of experiments.

9 CONCLUSION
Our work presents a new set of methods, experiments, and results
which furthers our understanding of how our brains comprehend
computer code. It is unique in addressing two core issues that
made it difficult to interpret results from prior studies. First, we
disentangle responses to the act of code comprehension from code
simulation. Second, we analyze responses in brain areas that are
functionally localized in individual participants, which provides an
accurate interpretation of the observed responses. We find that the
MD system in our brains consistently processes code comprehension,
while the Language system does not. We release our code, stimuli,
and brain data for the community to reuse and extend.

Program Comprehension Does Not Primarily Rely On the Language Centers of the Human Brain Woodstock ’18, June 03–05, 2020, CSAIL, MIT

REFERENCES
[1] Aakash Agrawal, KVS Hari, and SP Arun. 2018. How does reading expertise

influence letter representations in the brain? An fMRI study. Journal of Vision 18,
10 (2018), 1161–1161.

[2] Miltiadis Allamanis, Earl T Barr, Premkumar Devanbu, and Charles Sutton. 2018.
A survey of machine learning for big code and naturalness. ACM Computing
Surveys (CSUR) 51, 4 (2018), 1–37.

[3] Marie Amalric and Stanislas Dehaene. 2016. Origins of the brain networks for
advanced mathematics in expert mathematicians. Proceedings of the National
Academy of Sciences 113, 18 (2016), 4909–4917.

[4] Marie Amalric and Stanislas Dehaene. 2019. A distinct cortical network for
mathematical knowledge in the human brain. NeuroImage 189 (2019), 19–31.

[5] Katrin Amunts and Karl Zilles. 2012. Architecture and organizational principles
of Broca’s region. Trends in cognitive sciences 16, 8 (2012), 418–426.

[6] Andrew James Anderson, Edmund C Lalor, Feng Lin, Jeffrey R Binder, Leonardo
Fernandino, Colin J Humphries, Lisa L Conant, Rajeev DS Raizada, Scott Grimm,
and XixiWang. 2019. Multiple regions of a cortical network commonly encode the
meaning of words in multiple grammatical positions of read sentences. Cerebral
cortex 29, 6 (2019), 2396–2411.

[7] Marina Umaschi Bers. 2018. Coding, playgrounds and literacy in early childhood
education: The development of KIBO robotics and ScratchJr. In 2018 IEEE global
engineering education conference (EDUCON). IEEE, 2094–2102.

[8] Marina U Bers, Carina González-González, and Mª Belén Armas-Torres. 2019.
Coding as a playground: Promoting positive learning experiences in childhood
classrooms. Computers & Education 138 (2019), 130–145.

[9] Idan Blank, Nancy Kanwisher, and Evelina Fedorenko. 2014. A functional disso-
ciation between language and multiple-demand systems revealed in patterns of
BOLD signal fluctuations. Journal of neurophysiology 112, 5 (2014), 1105–1118.

[10] Idan A Blank and Evelina Fedorenko. 2017. Domain-general brain regions do
not track linguistic input as closely as language-selective regions. Journal of
Neuroscience 37, 41 (2017), 9999–10011.

[11] Matthew Brett, Ingrid S Johnsrude, and Adrian M Owen. 2002. The problem
of functional localization in the human brain. Nature reviews neuroscience 3, 3
(2002), 243–249.

[12] Korbinian Brodmann. 1909. Vergleichende Lokalisationslehre der Grosshirnrinde
in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Barth.

[13] Santiago A Cadena, George H Denfield, Edgar Y Walker, Leon A Gatys, An-
dreas S Tolias, Matthias Bethge, and Alexander S Ecker. 2019. Deep convolutional
models improve predictions of macaque V1 responses to natural images. PLoS
computational biology 15, 4 (2019), e1006897.

[14] Joao Castelhano, Isabel C Duarte, Carlos Ferreira, Joao Duraes, Henrique Madeira,
and Miguel Castelo-Branco. 2019. The role of the insula in intuitive expert bug
detection in computer code: an fMRI study. Brain imaging and behavior 13, 3
(2019), 623–637.

[15] David Glenn Clark and Jeffrey L Cummings. 2003. Aphasia. In Neurological
Disorders. Elsevier, 265–275.

[16] John Duncan. 2010. The multiple-demand (MD) system of the primate brain:
mental programs for intelligent behaviour. Trends in cognitive sciences 14, 4 (2010),
172–179.

[17] John Duncan and Adrian M Owen. 2000. Common regions of the human frontal
lobe recruited by diverse cognitive demands. Trends in neurosciences 23, 10 (2000),
475–483.

[18] Sarah Fakhoury, Yuzhan Ma, Venera Arnaoudova, and Olusola Adesope. 2018.
The effect of poor source code lexicon and readability on developers’ cognitive
load. In 2018 IEEE/ACM 26th International Conference on Program Comprehension
(ICPC). IEEE, 286–28610.

[19] Sarah Fakhoury, Devjeet Roy, Yuzhan Ma, Venera Arnaoudova, and Olusola
Adesope. 2019. Measuring the impact of lexical and structural inconsistencies
on developersâĂŹ cognitive load during bug localization. Empirical Software
Engineering (2019), 1–39.

[20] Evelina Fedorenko, Michael K Behr, and Nancy Kanwisher. 2011. Functional
specificity for high-level linguistic processing in the human brain. Proceedings of
the National Academy of Sciences 108, 39 (2011), 16428–16433.

[21] Evelina Fedorenko and Idan A Blank. 2020. BrocaâĂŹs area is not a natural kind.
Trends in cognitive sciences 24, 4 (2020), 270–284.

[22] Evelina Fedorenko, JohnDuncan, andNancy Kanwisher. 2012. Language-selective
and domain-general regions lie side by side within BrocaâĂŹs area. Current
Biology 22, 21 (2012), 2059–2062.

[23] Evelina Fedorenko, John Duncan, and Nancy Kanwisher. 2013. Broad domain
generality in focal regions of frontal and parietal cortex. Proceedings of the
National Academy of Sciences 110, 41 (2013), 16616–16621.

[24] Evelina Fedorenko, Po-Jang Hsieh, Alfonso Nieto-Castañón, Susan Whitfield-
Gabrieli, and Nancy Kanwisher. 2010. New method for fMRI investigations of
language: defining ROIs functionally in individual subjects. Journal of neuro-
physiology 104, 2 (2010), 1177–1194.

[25] Evelina Fedorenko, Anna Ivanova, Riva Dhamala, and Marina Umaschi Bers.
2019. The language of programming: a cognitive perspective. Trends in cognitive

sciences 23, 7 (2019), 525–528.
[26] Jason Fischer, John G Mikhael, Joshua B Tenenbaum, and Nancy Kanwisher.

2016. Functional neuroanatomy of intuitive physical inference. Proceedings of
the national academy of sciences 113, 34 (2016), E5072–E5081.

[27] Benjamin Floyd, Tyler Santander, and Westley Weimer. 2017. Decoding the
representation of code in the brain: An fMRI study of code review and expertise.
In 2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE).
IEEE, 175–186.

[28] Gary H Glover. 2011. Overview of functional magnetic resonance imaging.
Neurosurgery Clinics 22, 2 (2011), 133–139.

[29] Jesse Gomez, Michael Barnett, and Kalanit Grill-Spector. 2019. Extensive child-
hood experience with Pokémon suggests eccentricity drives organization of
visual cortex. Nature human behaviour 3, 6 (2019), 611–624.

[30] Philip J Guo. 2018. Non-native english speakers learning computer program-
ming: Barriers, desires, and design opportunities. In Proceedings of the 2018 CHI
conference on human factors in computing systems. 1–14.

[31] Victor W Henderson. 1986. Paul Broca’s less heralded contributions to apha-
sia research: Historical perspective and contemporary relevance. Archives of
Neurology 43, 6 (1986), 609–612.

[32] Klaus Hoenig, Cornelia Müller, Bärbel Herrnberger, Eun-Jin Sim, Manfred Spitzer,
Günter Ehret, and Markus Kiefer. 2011. Neuroplasticity of semantic representa-
tions for musical instruments in professional musicians. NeuroImage 56, 3 (2011),
1714–1725.

[33] Yu Huang, Kevin Leach, Zohreh Sharafi, Nicholas McKay, Tyler Santander, and
Westley Weimer. 2020. Biases and differences in code review using medical
imaging and eye-tracking: genders, humans, and machines. In Proceedings of
the 28th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. 456–468.

[34] Yu Huang, Xinyu Liu, Ryan Krueger, Tyler Santander, Xiaosu Hu, Kevin Leach,
and Westley Weimer. 2019. Distilling neural representations of data structure ma-
nipulation using fMRI and fNIRS. In 2019 IEEE/ACM 41st International Conference
on Software Engineering (ICSE). IEEE, 396–407.

[35] Yoshiharu Ikutani, Takatomi Kubo, Satoshi Nishida, Hideaki Hata, Kenichi Mat-
sumoto, Kazushi Ikeda, and Shinji Nishimoto. 2020. Expert programmers have
fine-tuned cortical representations of source code. Eneuro (2020).

[36] Yoshiharu Ikutani and Hidetake Uwano. 2014. Brain activity measurement during
program comprehension with NIRS. In 15th IEEE/ACIS International Conference
on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed
Computing (SNPD). IEEE, 1–6.

[37] Anna A Ivanova, Shashank Srikant, Yotaro Sueoka, Hope H Kean, Riva Dhamala,
Una-May O’Reilly, Marina U Bers, and Evelina Fedorenko. 2020. Comprehension
of computer code relies primarily on domain-general executive brain regions.
Elife 9 (2020), e58906.

[38] Susanne M Jaeggi, Martin Buschkuehl, John Jonides, and Walter J Perrig. 2008.
Improving fluid intelligence with training on working memory. Proceedings of
the National Academy of Sciences 105, 19 (2008), 6829–6833.

[39] Nancy Kanwisher. 2010. Functional specificity in the human brain: a window
into the functional architecture of the mind. Proceedings of the National Academy
of Sciences 107, 25 (2010), 11163–11170.

[40] Seyed-Mahdi Khaligh-Razavi and Nikolaus Kriegeskorte. 2014. Deep supervised,
but not unsupervised, models may explain IT cortical representation. PLoS
computational biology 10, 11 (2014), e1003915.

[41] Ryan Krueger, Yu Huang, Xinyu Liu, Tyler Santander, Westley Weimer, and Kevin
Leach. 2020. Neurological divide: an fMRI study of prose and code writing. In
2020 IEEE/ACM 42nd International Conference on Software Engineering (ICSE).
IEEE, 678–690.

[42] Yun-Fei Liu, Judy Kim, Colin Wilson, and Marina Bedny. 2020. Computer code
comprehension shares neural resources with formal logical inference in the
fronto-parietal network. Elife 9 (2020), e59340.

[43] Mara Mather, John T Cacioppo, and Nancy Kanwisher. 2013. How fMRI can
inform cognitive theories. Perspectives on Psychological Science 8, 1 (2013), 108–
113.

[44] Monica Melby-Lervåg and Charles Hulme. 2013. Is working memory training
effective? A meta-analytic review. Developmental psychology 49, 2 (2013), 270.

[45] Zachary Mineroff, Idan Asher Blank, Kyle Mahowald, and Evelina Fedorenko.
2018. A robust dissociation among the language, multiple demand, and default
mode networks: evidence from inter-region correlations in effect size. Neuropsy-
chologia 119 (2018), 501–511.

[46] Takao Nakagawa, Yasutaka Kamei, Hidetake Uwano, Akito Monden, Kenichi
Matsumoto, and Daniel M German. 2014. Quantifying programmers’ mental
workload during program comprehension based on cerebral blood flow measure-
ment: A controlled experiment. In Companion proceedings of the 36th international
conference on software engineering. 448–451.

[47] Alfonso Nieto-Castañón and Evelina Fedorenko. 2012. Subject-specific functional
localizers increase sensitivity and functional resolution of multi-subject analyses.
Neuroimage 63, 3 (2012), 1646–1669.

[48] Chris Parnin, Janet Siegmund, and Norman Peitek. 2017. On the Nature of
Programmer Expertise.. In Ppig. 16.

Woodstock ’18, June 03–05, 2020, CSAIL, MIT Shashank Srikant, et. al.

[49] Russell A Poldrack. 2011. Inferring mental states from neuroimaging data: from
reverse inference to large-scale decoding. Neuron 72, 5 (2011), 692–697.

[50] Scott R Portnoff. 2018. The introductory computer programming course is first
and foremost a language course. ACM Inroads 9, 2 (2018), 34–52.

[51] Ivonne Schröter, Jacob Krüger, Janet Siegmund, and Thomas Leich. 2017. Compre-
hending studies on program comprehension. In 2017 IEEE/ACM 25th International
Conference on Program Comprehension (ICPC). IEEE, 308–311.

[52] Cory Shain, Idan Blank, Marten van Schijndel, Evelina Fedorenko, and William
Schuler. 2019. fMRI reveals language-specific predictive coding during naturalistic
sentence comprehension. Neuropsychologia (2019).

[53] Summer L Sheremata, Katherine C Bettencourt, and David C Somers. 2010. Hemi-
spheric asymmetry in visuotopic posterior parietal cortex emerges with visual
short-term memory load. Journal of Neuroscience 30, 38 (2010), 12581–12588.

[54] Janet Siegmund, Christian Kästner, Sven Apel, Chris Parnin, Anja Bethmann,
Thomas Leich, Gunter Saake, and André Brechmann. 2014. Understanding
understanding source code with functional magnetic resonance imaging. In
Proceedings of the 36th International Conference on Software Engineering. 378–
389.

[55] Janet Siegmund, Norman Peitek, Chris Parnin, Sven Apel, Johannes Hofmeister,
Christian Kästner, Andrew Begel, Anja Bethmann, and André Brechmann. 2017.
Measuring neural efficiency of program comprehension. In Proceedings of the
2017 11th Joint Meeting on Foundations of Software Engineering. 140–150.

[56] Elliot Soloway. 1986. Learning to program= learning to construct mechanisms
and explanations. Commun. ACM 29, 9 (1986), 850–858.

[57] Nathalie Tzourio-Mazoyer, Brigitte Landeau, Dimitri Papathanassiou, Fabrice
Crivello, Olivier Etard, Nicolas Delcroix, Bernard Mazoyer, and Marc Joliot. 2002.
Automated anatomical labeling of activations in SPMusing amacroscopic anatom-
ical parcellation of the MNI MRI single-subject brain. Neuroimage 15, 1 (2002),
273–289.

[58] Xin Xia, Lingfeng Bao, David Lo, Zhenchang Xing, Ahmed E Hassan, and Shan-
ping Li. 2017. Measuring program comprehension: A large-scale field study with
professionals. IEEE Transactions on Software Engineering 44, 10 (2017), 951–976.

[59] Daniel LK Yamins, Ha Hong, Charles F Cadieu, Ethan A Solomon, Darren Seibert,
and James J DiCarlo. 2014. Performance-optimized hierarchical models predict
neural responses in higher visual cortex. Proceedings of the national academy of
sciences 111, 23 (2014), 8619–8624.

Program Comprehension Does Not Primarily Rely On the Language Centers of the Human Brain Woodstock ’18, June 03–05, 2020, CSAIL, MIT

A METHODS
In this section, we present details on the stimuli we used for the
fROI localizer tasks, how we defined fROIs, stimuli we designed for
the coding tasks, the procedure we followed to present these tasks
to our study participants, how we recruited our participants, and
finally, our analysis of the recorded MRI data.

A.1 Participants
For Experiment 1, we recruited 25 participants (13women,mean age
= 22 years, SD = 3.0). Average age at which participants started to
programwas 16 years (SD = 2.6); average number of years spent pro-
gramming was 6.3 (SD = 3.8). In addition to Python, 20 people also
reported some knowledge of Java, 18 people reported knowledge
of C/C++, 4 of functional languages, and 20 of numerical languages
like Matlab and R. Twenty-three participants were right-handed,
one was ambidextrous, and one was left-handed; the left-handed
participant had a right-lateralized Language system and was ex-
cluded from the analyses, leaving 24 participants total (the rest had
left-lateralized language regions). All participants in Experiment
1 were also provided a 1-hour paper-pencil Python assessment,
administered in the week of their scheduled scan. It consisted of
23 questions, 22 of which expected short-responses. One question
required an algorithm to be designed and implemented in Python.
There was no overlap between questions on this assessment and
the stimuli presented in the experiments. We used this to measure
their general proficiency in Python and programming.

For Experiment 2, we recruited 21 participants (13 women, mean
age = 22 years, SD = 2.8). There was no overlap in participants
between the two experiments. In addition to ScratchJr, 8 people
also reported some knowledge of Python, 6 people reported knowl-
edge of Java, 9 people reported knowledge of C/C++, 1 of func-
tional languages, and 14 of numerical languages like Matlab and R
(one participant did not complete the programming questionnaire).
Twenty were right-handed and one was ambidextrous; all partici-
pants had right-lateralized language regions, as evaluated with the
language localizer task. Two participants from Experiment 2 had
to be excluded due to excessive motion levels during the MRI scan,
leaving 19 participants total.

All participants were recruited from local universities and their
surrounding communities, and compensated for their participation.
All were native speakers of English, had normal or corrected to nor-
mal vision, and reported working knowledge of Python or ScratchJr,
respectively. The protocol for these studies was approved by an
institutional review board. All participants gave written informed
consent in accordance with protocol requirements.

A.2 Localizer tasks
All participants completed a language localizer task aimed at iden-
tifying language-responsive brain regions [24], a spatial working
memory localizer task aimed at identifying the multiple demand
(MD) brain regions [23], and a set of coding tasks.

A language localizer task identified brain regions within indi-
vidual participants that selectively respond to language stimuli.
During the task, participants read sentences (e.g. NOBODY COULD HAVE PRE-

DICTED THE EARTHQUAKE IN THIS PART OF THE COUNTRY) and lists of disconnected, pro-
nounceable non-words (e.g. U BIZBY ACWORRILY MIDARALBUSHU SNOOKI BILIBOP KUKEE

WEPS WIBRON PUZ). Each stimulus consisted a total of twelve words/non-
words. For details of how the language materials were constructed,
see Fedorenko et. al. [24]. We refer to the sentence reading task as
SR and non-word reading task as NR. The SR > NR contrast has
been previously shown to reliably activate left-lateralized fronto-
temporal language processing regions and to be robust to changes
in the materials, task, and modality of presentation [24, 45]. Stimuli
were presented in the center of the screen, one word/non-word at a
time, at the rate of 450 ms per word/non-word. Each stimulus was
preceded by a 100 ms blank screen and followed by a 400 ms screen
showing a picture of a finger pressing a button, and a blank screen
for another 100 ms, for a total trial duration of 6 s. Participants were
asked to press a button whenever they saw the picture of a finger
pressing a button. This task was included to help participants stay
alert and awake.

Figure 4: The two localizer tasks we adopted from prior
works [23, 24]. The MD system localizer task tests spatial
reasoning. Participants are shown, in quick succession, 4
screens with different highlighted squares in a grid. They
are then shown two grids and have to correctly identify the
grid which superimposes all the highlighted squares shown
to them.The Language system localizer task requires partici-
pants to read two sets of sentences - one coherent andmean-
ingful (left), and the other pronounceable yet meaningless
(right).

Previous work established a spatial working memory task which
identified the MD system in individuals [23]. Participants had to
keep track of four (the easy condition) or eight (the hard condition)
sequentially presented locations in a 3×4 grid (see Figure 2). In
both conditions, they performed a two-alternative forced-choice
task at the end of each trial to indicate the set of locations they just
saw. This hard > easy contrast has been previously shown to
robustly activate MD regions [23]. These regions have been shown
to respond to difficulty manipulations across many diverse tasks
[16, 23]. Stimuli were presented in the center of the screen across
four steps. Each of these steps lasted for 1000 ms and presented one
location on the grid in the easy condition, and two locations in the
hard condition. Each stimulus was followed by a choice-selection
step, which showed two grids side by side. One grid contained
the locations shown on the previous four steps, while the other
contained an incorrect set of locations. Participants were asked to
press one of two buttons to choose the grid that showed the correct
locations.

A.3 Coding tasks
The coding tasks in Experiment 1 (Python) included three condi-
tions: problems in Python with English variables (codeE), problems

Woodstock ’18, June 03–05, 2020, CSAIL, MIT Shashank Srikant, et. al.

in Python with Japanese variables (codeJ), and problems described
in English sentences (sent). The full list of problems is available on
the project’s code repository. Each participant saw 72 problems, 24
from each of the three conditions. Any given participant saw only
one version of a problem. Half of the problems in each condition
required performing mathematical operations, and the other half
required string manipulations. In addition, both math and string-
manipulation problems varied in program structure: 13 of the prob-
lems of each type included only sequential statements, 13 included a
for loop, and 1

3 included an if/else statement. Participants were
instructed to read the problem statement and press a button when
they were ready to respond (the minimum reading time was re-
stricted to 5 s and the maximum to 50 s; mean reading time was
19 s). Once they pressed the button, they were presented with four
response options and had to indicate their response by pressing a
corresponding button. The response screen was presented for 5 s.

Experiment 2 (ScratchJr) included two conditions: short pro-
grams in ScratchJr, and verbal descriptions of problems presented
as written sentences. During each trial, participants were presented
with a fixation cross 4 s, followed by a program for 8 s (in either
code or verbal form), followed by a video that either matched or did
not match that output of the program. Participants were instructed
to indicate whether the video matched the description by pressing
one of the two buttons as the video was playing. Average video
length was 4.13 s (SD 1.70 s).

A.4 Experiment procedure
Each task was organized as follows - blocks contained multiple
stimuli (referred to as trials in the neuroimaging literature) from a
given condition. Blocks from different conditions were arranged to
form a run. The Language system andMD system localizer tasks had
two blocks - a fixation block and the experiment blocks containing
the localizer conditions. Experiment blocks lasted 18 s (with 3 trials
per block), and fixation blocks lasted 14 s. Each run (consisting of
5 fixation blocks and 16 experimental blocks) lasted 358 s. Each
participant completed 2 runs.

For theMD localizer tasks, experimental blocks lasted 32 s (with 4
trials per block), and fixation blocks lasted 16 s. Each run (consisting
of 4 fixation blocks and 12 experimental blocks) lasted 448 s. Each
participant completed 2 runs.

The condition order was randomly counterbalanced across runs.
In each run of Experiment 1 (Python), participants completed 2

trials from each of the three conditions (codeE, codeJ, sent). Each
run included 3 fixation blocks, each of which lasted 10 s. One run
lasted an average of 176 s (SD = 34 s). Each participant completed
12 runs.

For Experiment 2 (ScratchJr), each run included 6 trials (three per
condition), and a 10 s fixation at the beginning and end of the run.
Each run lasted an average of 184.75 s (SD 3.86 s). Each participant
completed 4 runs.

A.5 Defining fROIs
Function regions of interest (fROIs) were defined using the group-
constrained subject-specific (GSS) approach [24] where a set of
spatial parcels were combined with each individual subjectâĂŹs
localizer activation map, to constrain the definition of individual

fROIs. The parcels mark the expected gross locations of activations
for a given contrast based on prior work and are sufficiently large
to encompass the extent of variability in the locations of individual
activations.

We reused parcels identified in prior works [23, 24]. For the
language localizer, we used a set of six parcels derived from a group-
level probabilistic activation overlap map for the sentence reading
(SR) > non-word reading (NR) contrast in 220 participants. These
parcels included two regions in the left inferior frontal gyrus (LIFG,
LIFGorb), one in the left middle frontal gyrus (LMFG), two in the
left temporal lobe (LAntTemp and LPostTemp), and one extending
into the angular gyrus (LAngG).

For the MD localizer, we used a set of 20 parcels (10 in each
hemisphere) derived from a group-level probabilistic activation
overlap map for the hard > easy spatial task contrast in 197
participants. The parcels included regions in frontal and parietal
lobes, as well as a region in anterior cingulate.

Within each parcel, we selected the top 10% most responsive
voxels, based on the t-values for the SR > NR contrast. Individual-
level fROIs defined in this way were then used for subsequent
analyses that examined the behavior of the MD and the Language
systems during the coding tasks.

A.6 Data processing and analysis
MRI data were analyzed using SPM5. Each participantâĂŹs data
were motion corrected and then normalized into a common brain
space (the Montreal Neurological Institute (MNI) template) and
resampled into 2mm isotropic voxels. The data were then smoothed
with a 4mm FWHM Gaussian filter and high-pass filtered (at 200s).
Effects were estimated using a General Linear Model (GLM) in
which each experimental condition was modeled with a boxcar
function (modeling entire blocks) convolved with the canonical
hemodynamic response function (HRF).

B ADDITIONAL RESULTS
We provide additional results from our data analysis of the MD and
the Language systems.

B.1 fROI responses - MD system
An analysis of activity within individual regions within the MD
system showed that 17 of the 20 fROIs in the Python experiment,
and 14 of the 20 fROIs in the ScratchJr experiment responded signif-
icantly more strongly to code problems than to sentence problems
(Figure 5). This demonstrates code processing is broadly distributed
across the MD system and is not localized to a particular subset of
regions within it.

We evaluate for selectivity to code comprehension by measuring
responses of code problems to hard working memory localizer
task for the MD system. Figure 6 plots activations in the various
regions of the MD system. We find none for ScratchJr, and three
regions in the frontal lobe (precentral-A, precentral-B, midFrontal)
which exhibit stronger responses to code problems. However, the
magnitude of code > sent in these regions (∆β= 1.03, 0.95, 0.97)
was comparable to the mean magnitude across all MD system fROIs
(average ∆β= 1.03), suggesting that the high response was caused
by the underlying code simulation rather than code comprehension.

Program Comprehension Does Not Primarily Rely On the Language Centers of the Human Brain Woodstock ’18, June 03–05, 2020, CSAIL, MIT

Figure 7: Response accuracies and reaction times to code-
related stimuli

Figure 5: Activations of fROIs to code and sent conditions
in the MD system- left hemisphere, MD system- right hemi-
sphere, and the Language system.

Figure 6: Activations of the MD system fROIs to code and
sent conditions, contrasted against the easy and hard MD
system localizer tasks. (A) Experiment 1, Python; left hemi-
sphere fROIs; (B) Experiment 1, Python; right hemisphere
fROIs; (C) Experiment 2, ScratchJr; left hemisphere fROIs;
(D) Experiment 2, ScratchJr; right hemisphere fROIs.

B.2 Behavorial Results
Figure 7 presents response accuracies and reaction times to code-
related stimuli presented to our participants in the imaging scanner.
Participants in Experiment 1 (Python) had a 99.6% response rate,
with an 85% accuracy on average on code problems (Figure 7.A). Fig-
ure 7.E shows the histogram of response accuracies of participants
in Python.

Participants in Experiment 2 (ScratchJr) had a 98.6% response
rate, with 79% accuracy on average on code problems (Figure 7.B).
These results demonstrate that participants were proficient in the
relevant programming language and engaged with the task. Figure
7.F shows the histogram of response accuracies of participants in
ScratchJr.

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	3.1 fMRI studies
	3.2 Regions of Interest (ROIs)

	4 Experiment Design
	4.1 Experiment workflow - An overview
	4.2 Condition design
	4.3 fMRI tasks
	4.4 Locating fROIs and data analysis

	5 Experiment Procedure
	6 Results
	7 Discussion
	8 Threats to validity
	9 Conclusion
	References
	A Methods
	A.1 Participants
	A.2 Localizer tasks
	A.3 Coding tasks
	A.4 Experiment procedure
	A.5 Defining fROIs
	A.6 Data processing and analysis

	B Additional Results
	B.1 fROI responses - MD system
	B.2 Behavorial Results

