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Abstract
Experiments in psycholinguistics and the cogni-
tive neuroscience of language rely on linguistic
stimuli (sentences) with either specific linguis-
tic properties or which target specific cognitive
processes. Such stimuli are generally assem-
bled using manual or semi-manual methods,
limiting their quality, quantity, and diversity.
We propose GOLI - a gradient-based optimiza-
tion method that transforms a random sentence
into a novel linguistic stimulus which fulfills
an experimenter’s goal. We apply GOLI to
two deliberately different tasks—creating mini-
mal pairs of counterfactual sentences, and de-
riving constrained stimuli that predict specific
responses in human brain regions. We demon-
strate how GOLI supports diverse experiment
goals and efficiently generates stimuli that are
not subject to experimenter biases which may
arise from manual methods.

1 Introduction

Experiments in psycholinguistics and cognitive
neuroscience of language aim to understand the rep-
resentations and computations that support human
comprehension and production abilities. In compre-
hension studies in particular, experiments record
behavioral (eye-tracking and self-paced reading
times) or neural outcomes (electroencephalogram,
EEG, and functional magnetic resonance imaging,
fMRI) while humans process carefully designed
linguistic input (Lai et al., 2015; Shain et al., 2019;
Wehbe et al., 2021; Heilbron et al., 2022). Simi-
lar methods have been recently extended to probe
how computational and language models process
such linguistic input as well (Warstadt et al., 2019;
Jeretic et al., 2020).

Linguistic stimuli (sentences) used in such ex-
periments are typically hand-constructed (Martín-
Loeches et al., 2012; Lai et al., 2015). While hand-
crafting provides the experimenter with significant
control over the goals of the constructed stimuli
(e.g. the stimuli should adhere to grammatical rules

Specify goals? Data-driven? Automate?
Handcrafted ✓ p p

Template-based ✓ p ✓

Naturalistic corpora p ✓ ✓

GOLI (this work) ¦ ✓ ✓

Table 1: GOLI automates generating stimuli which satisfy
experimenter-supplied goals. It handles a broader set of goals
than handcrafted and template-based methods while being
data-driven.

such as subject-verb agreement or convey informa-
tion about a particular topic), assembling a size-
able set of stimuli is time- and resource-intensive.
Another important concern is the diversity of the
resulting stimuli—they are generally limited by the
experimenter’s vocabulary and assumptions. Ex-
perimenters could easily be misguided by their top-
down assumptions or an inaccurate formulation of
the hypothesis being tested and use sets of words,
sentence structures, or concepts that are biased in
some way. Studies have shown how such biased
stimuli have led to incorrect scientific conclusions
(Chaves and Dery, 2018; Siegelman et al., 2019).

Another approach to constructing stimuli is to
use templates (Warstadt et al., 2020). An experi-
menter defines templates which structure and con-
strain stimuli. Stimuli are generated with a tem-
plate by filling them with words sampled from dif-
ferent naturalistic vocabularies (e.g. of parts of
speech). While this automates the process of cre-
ating stimuli and allows goal specification similar
to handcrafting (Warstadt et al., 2019; Jeretic et al.,
2020), the generated stimuli are still constrained to
the experimenter’s notions of a ‘correct’ template.
Templates also often generate unnatural and incor-
rect sentences, which then need to be manually
filtered out by the experimenter.

Yet another popular approach, which we refer
to as the search-based method (SBM), involves
randomly sampling from naturalistic text corpora
(Kennedy et al., 2013; Nastase et al., 2021; Heil-
bron et al., 2022). While this approach circumvents
biases potentially introduced in handcrafted and
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Linguistic stimuli

Linguistic / cognitive outcome
  

Novel linguistic stimuli

The  cat 
was  angry Seed stimulus I don’t find that particularly funny.

Counterfactual minimal pair I don’t find that particularly annoying.
fMRI task - high Pear don’t find that particularly Cance.
fMRI task - low This don’t find that particularly funny.

Figure 1: Overview. GOLI transforms a seed linguistic stimulus into a novel stimulus which either contains a desired linguistic
property or elicits a desired cognitive outcome. It uses a language model (θLLM) to represent the seed sentence, a mapping model
(θmap) to map it to the desired property, and uses a gradient-based method to modify the seed sentence (propagates gradients
through the composed model θmap◦ θLLM) into a novel one. The table (right) shows an example of stimuli generated from a
seed stimulus for the three objectives we demonstrate in this work.

template-guided stimuli, it has no efficient way to
identify goals like targeted phenomena (e.g. sen-
timent polarity, surprisal, agreement, garden-path
effects, licensing, gross syntactic expectation, cen-
ter embedding, long-distance dependencies, and
others mentioned in Marvin and Linzen (2018); Hu
et al. (2020)) or infrequent phenomena (Bresnan
and Kanerva, 1989; Losiewicz, 1992; Hoffmann,
2004; Ross, 2018; Turner, 2020) within the large
corpora that need to be sampled to find suitable
sentences. Prior work has manually edited such
sampled texts and inserted linguistic properties of
interest to create naturalistic stimuli (Futrell et al.,
2020). Further, sampling from corpora does not
enable creating minimal pair stimuli–pairs of sen-
tences that differ only in a very specific linguistic
property. Minimal pairs are extensively used in
psycholinguistic and language research to isolate
causal attributes of behavior (Bemis and Pylkkänen,
2011; Kochari et al., 2018; Parrish and Pylkkänen,
2021). Thus, minimal pairs, targeted and infrequent
phenomena are mostly studied through stimuli that
experimenters handcraft or create from templates.

It then seems that handcrafted and template-
based stimuli offer significant control over the
created stimuli, but may introduce undesir-
able experimenter-biases and are also time- and
resource-expensive to create. On the other hand, au-
tomated sampling from naturalistic corpora avoids
experimenter-biases, but is not suited to test tar-
geted or infrequent phenomena (Table 1). We pro-
pose a method that is data-driven, automated, ef-
ficient, and can fulfill a large set of experimenter
goals which includes targeted and infrequent phe-
nomena.

GOLI (Figure 1) is an automated approach to
generate goal-optimized linguistic stimuli. GOLI
starts from a seed sentence and modifies it until it
satisfies experimenter-specified outcomes (linguis-
tic or cognitive) by solving a gradient-based opti-

mization formulation. Constraints on the generated
stimuli can be easily enforced via the optimization
formulation, providing the necessary control over
stimuli that is typically offered by handcrafting and
template-based approaches. In fact, we show that
GOLI-generated stimuli can satisfy a broader set
of goals than what handcrafting or template-use
satisfies. GOLI is data-driven and is not bound to
inductive biases of experimenters since it relies on
data-driven computational models to transform the
seed sentence and optimize it to achieve the desired
goal.

We demonstrate GOLI on two deliberately dif-
ferent tasks: generation of minimal-pair counter-
factuals and the generation of stimuli which predict
specific responses in the human brain. These tasks
differ in the nature of their outcomes, desired goals,
and the constraints imposed on the generated sen-
tences. Across these differences, we show that
GOLI can successfully and easily model the vari-
ous constraints posed by these tasks and efficiently
generate novel stimuli, outperforming other meth-
ods currently used to prepare stimuli for such tasks.
We will make all the code and data related to this
work publicly available.

2 Problem description

In this section, we state the assumptions underlying
GOLI. We introduce notation that we use in the
rest of this work and then state the problem we
solve.

GOLI assumes an experiment uses a set of lin-
guistic stimuli to stimulate either a language prop-
erty or a cognitive outcome. Further, it assumes
the property or outcome is quantifiable, and a sta-
tistical model can predict its values corresponding
to an input linguistic stimulus. For example, if
an experiment outcome measures logical inaccu-
racy (linguistic outcome) or reading times (cogni-
tive outcome) in a sentence, then GOLI assumes a



model which maps a random sentence stimulus S to
a quantifiable measure of either the extent of inac-
curacy (former) or the time taken to read a sentence
(latter). We denote the mapping model as θmap-
the weights it is parameterized by, and the linguis-
tic property or cognitive outcome as y ∈ R. If the
model does not initially exist, it can be learned as
a preliminary step. We discuss in Section 6 the
case where learning such a mapping model is not
feasible.

Generally, θmap is trained to predict y ∈ R from
representations r ∈ Rd of the input stimulus S.
We use a large language model θLLM without loss
of generality, i.e. r = θLLM(S). Any alternate
representation which is similarly differentiable can
also be used, and this is yet another strength of
GOLI.
S = {xi}ni=1 denotes a sentence stimulus con-

sisting of n tokens xi ∈ {0, 1}|V |, where xi is a
token from the set V , the vocabulary of permissi-
ble tokens which the LLM processes. We provide
concrete examples describing the structure of xi

in Section 3. Following this notation, we have
ypred = θmap◦ θLLM({xi}ni=1), where ◦ denotes
model composition, i.e. S is first input to θLLM,
whose output is then input to θmap. GOLI allows
any number of and any kind of such models to be
composed together.

We study the problem of generating a sentence
Sgen by transforming S into Sgen in a way such
that ypred, the prediction of θmap◦ θLLM, is close
to ydesired, an outcome specified by the experi-
menter.

3 Method

In this section, we motivate our method using an
example. We then show how the problem of gener-
ating novel linguistic stimuli can be cast and solved
as a problem in first-order (gradient-based) opti-
mization. Consider the sentence:

Running slow makes me very happy.
which when input to the model M= θmap ◦ θLLM

predicts the sentiment ypred = positive (θmap is a
binary sentiment classifier). Further, let the vocab-
ulary V consist of the tokens:

V =

{
Run, Sit, Stand, ing, ed, slow, happy,

car, me, you, very, makes, well, ·, ?

}
(1)

The sentence has six space separated words with
a terminating period symbol in it. Let’s assume

tokenizing this sentence generates the following
eight tokens:

S = {xi}8i=1 = {Run, ing, slow,makes,me, very, happy, ·}
(2)

Further assume we desire a novel sentence whose
prediction is ydesired = negative. The generation
of sentences that we describe in this work involves
modifying a subset of the eight tokens in S in a way
that results in the model M predicting a value that
is closer to ydesired i.e. is transformed to a negative
sentiment sentence.

Two important questions need to be addressed
to generate such sentences. First, which tokens
or sites in the sentence should be modified? Of
the n sites, if we are allowed to choose at most
k sites, which set of ≤ k sites would best guide
M to the desired prediction. We call this the site
selection problem. Second, how should a token at
a given site be modified, and what should the mod-
ified token be? We call this the site perturbation
problem.
Site selection. The benefit of isolating site selec-
tion as a distinct sub-problem is it supports complex
formulations, such as constraining and optimizing
specific sites. For instance, site selection and site
perturbation can be jointly optimized: an optimal
site can depend on the optimal token found by the
site perturbation sub-problem and vice versa.

We employ a simple site selection strategy in
this work. To select k specific sites from the avail-
able n sites, we follow the gradient-based word
importance method from Wallace et al. (2019). The
method first sorts the tokens xi in decreasing order
of the magnitude of the gradient on the output y
with respect to xi. The top k magnitude tokens are
selected as the sites to perturb, since they impact
the output the most.
Site perturbation. At a given site, there are three
operations which would modify the token: replace
an existing token with another token, insert another
token at the site–either before or after the token
present at the site, or retain the token at the site
unaltered (this is equivalent to not selecting a site
to carry out a modification operation).

We discuss only replace modifications, since
deletion and insertion reduce to replace modifica-
tions. Deletion is replacing with an empty token,
and an insertion is a replace modification applied
to a dummy token inserted at a site.

A replacement token modification strategy re-
quires a replacement token ui∈ {0, 1}|V | to be



identified from the set of tokens V . For example, if
the selected site for replacement in (2) is 3: slow,
then a possible sentence could result from replacing
slow with car (token 8 sampled from the vocabu-
lary V in (1)), resulting in the previously unseen
sentence: Running car makes me very happy.
Increasing the number of sites to be perturbed re-
sults in a sentence that is very different from the
original sentence. Similarly, inserting new tokens
can introduce new words and phrases.

Selecting an appropriate token from a vocabulary
is a combinatorially expensive problem: it takes
O(|V |k) time to select tokens at k sites from the
vocabulary V , since each site offers |V | possible
tokens to choose from. The aim is to thus tractably
select a replacement token ui at a site i such that
the predicted activation ypred matches ydesired. We
set this up as a combinatorial optimization problem
and solve for ui.

3.1 Solution formulation
Based on the site selection perturbation formula-
tion, we formally define the described replacement
operation.

For a sentence S = {xi}ni=1and a set K of k site
indices to perturb, wherein each site index j satis-
fies (1 ≤ j ≤ n), we formalize site perturbation in
the following way: we introduce a one-hot vector
ui ∈ {0, 1}|V | to encode the selection of a token
from V which would serve as the replaced token
for at a chosen site.

If the jth entry [ui]j = 1 and i ∈ K, then the
jth token in V is used as the modified token which
will replace xi at the site i. We also impose the
constraint 1Tui = 1, implying that only one per-
turbation is performed at xi.

Let vector u ∈ {0, 1}k×|V | denote k different
ui vectors, one for each token i ∈ K, where
|K| = k. We then define a newly generated or
transformed sentence Sgen as comprising tokens
{xgen

i }ni=1, where each xgen
i is defined as:

xgen
i =

{
ui, ∀i ∈ K, where 1Tui = 1, ui ∈ {0, 1}|V |

xi, ∀i ̸∈ K
(3)

We solve the following objective to obtain u:

minimize
u

ℓ(u;x,θmap ◦ θLLM)

subject to constraints in (3)
(4)

where ℓ denotes an appropriate loss function which
encodes the desired cognitive outcome. Algo-
rithm 1 in Appendix 1 describes how GOLI solves
this optimization problem.

Incorporating additional constraints. A variety
of constraints on Sgen can be imposed by using
appropriate loss functions and vocabulary subsets
to find candidate replacement tokens from. Section
4.1 discusses how a loss function can be modified
to generate stimuli that are grammatically likely.
Similarly, other site-specific constraints like capi-
talizing the first word of a sentence or the last token
being a punctuation can be ensured by assigning
different subsets of naturalistic vocabularies when
solving the site perturbation problem. See notes in
Appendix A for details.

4 Experiments & Results

We demonstrate and assess GOLI on two tasks—
constructing minimal pairs of counterfactual sen-
tences for sentiment analysis, and an fMRI-based
targeted brain response task. These two tasks differ
in the questions they ask, the architectures used
to encode sentences (BERT vs. GPT2-XL), the
outcome of θmap (sentiment-class classification vs.
brain region response predictions), the set of con-
straints imposed on the generated sentences, and
consequently the loss functions needed to generate
sentences. We describe these details below.

4.1 Counterfactual minimal-pair task

Training-data augmentation with counterfactu-
als (CFs) has been proposed as a way to miti-
gate out-of-domain generalization of NLP mod-
els (Levesque et al., 2012; Kaushik et al., 2020).
Rooted in causal learning, a CF in the context of
NLP models is designed to study the change in an
NLP model’s prediction following an intervention
to its input text, generally implemented as minimal
edits to the text. Such minimal changes to differ-
ent input features help ascertain the causal role of
these features in a model’s prediction. Producing
such CF stimuli though can be challenging, and
resembles the process of developing minimal-pair
stimuli in psycholinguistics experiments discussed
in Section 1, Introduction.

Recent work however has explored automated
generation algorithms for such CFs (Wang and Cu-
lotta, 2021; Yang et al., 2021; Howard et al., 2022).
Notably, Howard et al. (2022), the state-of-the-art,
propose a system to generate CFs for sentiment
analysis on the SST-2 IMDB movie reviews dataset
(Socher et al., 2013). The CF reviews they generate
have the opposite sentiment as the original stimulus,
while being natural in a way that would resemble



CFs generated by human experts (Kaushik et al.,
2020; Gardner et al., 2020). We demonstrate how
GOLI can be setup for this task by appropriately
customizing the loss function and constraints in the
formulation in Eq. (4).
Objective. We use a BERT-based sentiment clas-
sifier fine-tuned on the SST-2 task (binary classifi-
cation) as our mapping model, θmap. In this case,
BERT serves as θLLM. Our objective then is to
generate modifications to a given sentiment review
such that θmap◦ θLLM flips its prediction on the
modified sentence and the modified sentence is
close to the original sentence.
Loss, Constraints. We use the standard binary
cross entropy (LossBCE) as our loss function as
it allows us to specify the desired class we want
θmap to predict in the binary sentiment classifica-
tion task:

ℓ(u) = BCE(θmap ◦ θLLM(u), ydesired) (5)

where ydesired is 0 for the negative sentiment class
and 1 for positive. An alternate loss function which
we do not try and defer to future work is ensuring
general fluency and grammaticality of the gener-
ated sentences (Goswamy et al., 2020) by introduc-
ing two additional loss terms:

ℓ(u) = LossBCE+LossBOW+KL(H(u), H(x))
(6)

where LossBOW = − log(
∑

(piui)) penalizes se-
lecting a ui whose bag-of-words probability pi is
low or unlikely, and KL(·) is the KL-divergence
between the intermediate decoder representation
H(·) of the modified input u and the unmodified,
original input stimuli x. The KL-term ensures the
distribution of each generated token ui is similar
to the original token xi. To ensure minimal pairs,
we select a maximum of two sites to be modified
in each original sentence.
Evaluation. We evaluate our generated stimuli
against the CF-generation method introduced in
Howard et al. (2022). They work with a subset
of the IMDB dataset (training set, N=8173). For
each sentence in the training set, they generate a
CF using the following complex setup: first, they
provide a prompt (a part of the original stimulus)
and a desired sentiment (positive or negative) to
a pre-trained adaptation of the GPT-2 model (first
proposed by Gururangan et al. (2020)). The model
is optimized to generate reviews which complete
the prompt and are of the desired sentiment po-
larity. Second, they use a constrained decoding

algorithm (first proposed by Lu et al. (2021)) with
the adapted GPT-2 model to ensure the generated
sentence remains a minimal pair to the given in-
put sentence. They augment the generated CFs
with the training set and fine-tune a RoBERTa-
based classifier. They augment with CFs generated
from two settings–NeuroCF-1g: where they pro-
vide just the first word in the original stimulus as a
prompt to their system, and NeuroCF-np: which
selects a subset of the original sentence as a prompt.
They evaluate the fine-tuned model on three out-
of-distribution test sets - Test-set 1: another subset
from the IMDB dataset (N=2245), Test-set 2: a
dataset from Kaushik et al. (2020) (N=488), Test-
set 3: a dataset from Gardner et al. (2020) (N=488).
Accuracy on the test set and descriptive metrics of
the generated sentences (described below) serve as
merit indicators for the effectiveness of the gener-
ated CFs.

To evaluate GOLI, we generate minimal-pairs
for each sentence in their training set, and fine-tune
and evaluate their RoBERTa model using an aug-
mented dataset containing GOLI-generated sen-
tences. We compare the accuracy of the RoBERTa
model against the CFs generated by NeuroCF-1g
and NeuroCF-np. Expert-crafted CFs generated by
Kaushik et al. (2020) serves as an upper bound for
performance in our evaluation.

Results. Table 2, Top shows the accuracy of the
CF-augmented RoBERTa models on the three test
sets, averaged over 10 random runs. Across the test
sets, we see that GOLI consistently outperforms
NeuroCF-1g, and is comparable in its performance
to NeuroCF-np. We highlight that GOLI uses a
very generic formulation for transforming an input
sentence to meet a desired goal, and despite the
generality, is capable of matching the performance
of a bespoke solution like NeuroCF.

Further, to evaluate the quality of the generated
sentences, Howard et al. (2022) use two metrics
(Table 2, Bottom): MoverScore (Zhao et al., 2019)
and perplexity. A MoverScore is computed be-
tween the generated counterfactual and the origi-
nal sentence. A low score suggests the two sen-
tences are similar. We see that GOLI generates
sentences of similar MoverScores to NeuroCF-1g
and comparable to NeuroCF-np. However, the av-
erage counterfactuals created by experts seem to
be fairly farther off from their respective original
sentences, suggesting room for automated stimuli
generation methods to improve.



Test-set 1 Test-set 2 Test-set 3
GOLI 93.370.01 94.940.53 92.140.05

NeuroCF-1g 92.750.03 93.100.06 89.270.04
NeuroCF-np 93.100.05 94.740.08 91.181.17

Expert-crafted 92.630.48 97.340.37 95.220.45

MoverScore Perplexity
GOLI 0.45 39.2

NeuroCF-1g 0.46 14.1

NeuroCF-np 0.20 12.7

Expert-crafted 0.70 19.3

Table 2 Figure 2
Results. Table 2: GOLI-generated counterfactual sentences vs. NeuroCF (Howard et al., 2022) vs. expert-crafted CFs (serves as
an upper bound; Kaushik et al. (2020)), augmented with training data to improve the robustness of a RoBERTa-based sentiment
analysis classifier. Top. Accuracy (percent) on three unseen test sets. Std. dev. across 10 runs mentioned as subscripts. Bottom.
MoverScore and Perplexity, two quality measures of the generated sentences. Figure 2: A histogram of ypred from sentences
sampled using a search-based method (SBM), and those generated by GOLI optimized on two objectives: fMRI-high and
fMRI-low.

Perplexity is a measure of how likely a given
sentence is, which we evaluate on GPT-J, a domain-
agnostic model. A lower score suggests a higher
likelihood of the sentence. Table 2 shows that
GOLI produces sentences with comparatively
higher perplexity. This was expected since we do
not incorporate felicity-related loss terms as de-
scribed in Eq. (6). As seen in previous works e.g.
Goswamy et al. (2020), a modified loss incorporat-
ing felicity should improve perplexity, making it
comparable to NeuroCF. We defer this verification
to future work.

4.2 fMRI task

A characterization of the sentences that activate the
language network in the human brain (Fedorenko
et al., 2010) remains an open question. The fMRI
task is to thus generate sentences that predict a de-
sired brain response in the language network. To
do so, we set up an fMRI experiment where we
first collect brain responses of participants reading
random sentences. We then fit a linear model θmap

to predict these brain responses from LLM repre-
sentations of the sentences. Given a trained θmap,
we use GOLI to generate novel sentences using a
separate dataset of seed sentences.
Objectives. GOLI is provided two separate ob-
jectives: to generate sentences that predict high
responses in the language network (fMRI-high;
ypred≥ +0.4) and to generate another set of sen-
tences which predict low brain responses (fMRI-
low; ypred≤ −0.3).

Setup. We invited participants (N=5) to passively
read a set of 1000 diverse, corpus-extracted 6-
word sentences in an event-related design (referred
henceforth as training set, see Appendix C.2 for
details). We pre-process and select responses from
language-selective areas of the brain (Appendix
C.4). Voxels (3D pixels) from these areas were av-
eraged within and across each participant to yield a
scalar language network response value associated
with each sentence stimulus. The range of brain
responses values predicted by θmap on the training
set across participants was [−0.47,+0.54]. These
values represent z-scores of brain responses and
hence are both positive and negative–they repre-
sent relative magnitudes of brain responses (see
Appendix C.3). Based on the training set, we inter-
pret negative values ≤ −0.3 as a low response and
≥ +0.4 as high. A linear model θmap∈ Rd was
learned to predict these average brain responses
across participants from GPT2-XL representations
r ∈ Rd of sentences (d = 1600; details in Ap-
pendix C.5).
Loss, Constraints. We model the fMRI-high and
fMRI-low objectives with a squared-loss function:

ℓ(u) = (ydesired − θmap ◦ θLLM(u))2 (7)

To generate sentences with high positive and
high negative desired predicted responses, we set
ydesired to +1.2 and −0.8 respectively, values
slightly beyond the maximum and minimum pre-
dicted values seen on the training set.

The number of words in each sentence in Sgen

was constrained to contain six space separated



words, terminated by a punctuation, with the first
word capitalized. These constraints ensure avoid-
ing confounding effects of sentence length and un-
usual orthography (e.g. lack of capitalization, no
end-of-sentence punctuation) in fMRI recordings.

Search-based method (SBM). We compare GOLI
to a search-based approach which is routinely used
to assemble language stimuli for such a task: ex-
haustively searching a large, unseen naturalistic
corpus of text. Each sentence from such a corpus is
individually tested against the desired goal. Unlike
GOLI, the search-based method does not modify
any sentences in the set of sentences it searches
through–it just filters and selects those that achieve
the desired goal. A key drawback of this method is
that a prohibitively large corpus may then need to
be sampled from should a small proportion of nat-
ural sentences meet the desired goals (fMRI-high,
fMRI-low objectives for this task). Further, as dis-
cussed in Section 1, natural sentences may not nec-
essarily meet the desired goals for this task—the
brain may well be responsive to a very particular
subset of sentences and sentence structure patterns.
SBM over a naturalistic corpus then threatens the
discovery of such patterns.

Evaluation criteria. We select 1500 sentences ex-
tracted from various, diverse text corpora (referred
henceforth as test set; see Appendix C.1) to evalu-
ate SBM and GOLI. We demonstrate the utility of
GOLI over SBM along two dimensions: sample
efficiency: the number of sentences needed in a
corpus which when sampled results in the desired
number of linguistic stimuli which satisfy the de-
sired goal, and solution diversity: whether the
sentences generated by GOLI achieves (or outper-
forms) the desired goal in both quality and quantity.

Results. Figures 2 summarizes our results. We
plot the distribution of ypred–predictions made
by θmap—on processing sentences produced by
GOLI and by SBM on the test set (N=1500). We
see that while most randomly sampled sentences
(marked in blue, SBM) in the test set elicit aver-
age brain responses (around the z-score 0 of ypred),
0.2% ( 3

1500 ) sentences elicit high brain responses
(ypred≥ 0.4). In sharp contrast, we find that GOLI,
when optimized for fMRI-high (green curve in Fig-
ure 2), generates 80% ( 838

1049 ) high-response pre-
diction sentences. We work with 1049 GOLI-
generated sentences because 451 (1500–1049) of
those failed the automated filters (Appendix C.7).

Comparing the two methods on the fMRI-low

objective, we see 0.2% ( 4
1500 ) sentences in SBM

elicit low brain responses (ypred≤ 0.3). GOLI
sentences optimized for fMRI-low (red curve, Fig-
ure 2) yield an interesting observation: despite the
sentences being optimized to minimize their pre-
dictions, we find that, unlike in the fMRI-high ob-
jective, GOLI is unable to generate sentences that
predict values significantly lower than those found
on the test set. GOLI generates 0.8% ( 8

990 ) low-
response sentences, although the overall average
ypred drops to −0.05 in fMRI-low, from +0.02 in
the SBM setting.

These results suggest that in order to assemble
a total of 500 high or low activity sentences (a rea-
sonable estimate of the number of unique sentences
needed in an fMRI experiment), one would have to
significantly increase the number of sentences to
sample from when using SBM, which increases the
compute and data-needs to run such experiments.
For the fMRI-high objective especially, we see that
the number of sentences required to sample from
may be significantly higher than 20x since we never
see sentences greater than 0.40 on the training set,
while GOLI reveals that perhaps high-response
sentences are those that predict ≥ 0.65.

Further, we find that GOLI generates fairly un-
usual sentence structures for the fMRI-high objec-
tive (Fig 1 and Appendix C.9), while generating
more ‘regular-looking’ sentences for the fMRI-low
objective. This is an interesting result which would
not have been discovered had we sampled from
regular text corpora via SBM. Collecting brain data
for the GOLI-generated sentences, and analyzing
the implication of these unusual fMRI-high sen-
tences on the neuroscience of language-responsive
brain regions is left for future work. We discuss
this more in Section 6.

5 Related work

Automated methods to create linguistic stimuli
have been explored in the context of comprehen-
sion difficulty (Boyce et al., 2020), probing lan-
guage models (Warstadt et al., 2020) and generat-
ing counterfactuals (Wang and Culotta, 2021; Yang
et al., 2021; Howard et al., 2022). Boyce et al.
(2020) present a use-case that GOLI directly ad-
dresses. They use a language model to find high
surprisal words to use as distractors in their stim-
uli. However, their setup does not generalize to the
use-cases we cover in this work and is limited to
finding high surprisal words, a trivial objective in



our formulation. We discuss the sentence templates
from Warstadt et al. (2020) in Section 1 in detail.

Methods used in counterfactual generation re-
semble methods used for adversarial attacks (Gao
et al., 2018; Ribeiro et al., 2018; Pezeshkpour
et al., 2019; Ren et al., 2019; Yoo et al., 2020),
which come closest to the stimuli generation al-
gorithm (Algorithm 1) we propose in this work.
Other works have proposed using a GAN (Zhao
et al., 2018) and controlling the output of model
decoders (Lu et al., 2021; Dathathri et al., 2020;
Goswamy et al., 2020) to generate naturalistic sen-
tences. GOLI’s formulation subsumes the meth-
ods used in these works. None of these works
formulate the problems of site-selection and site-
perturbation we introduce (Section 3). Works on
adversarial attacks end up implicitly solving just
the site-selection problem using gradients, replac-
ing the selected sites with randomly selected words.
Their primary objective is to flip a model’s predic-
tion while maintaining the semantic meaning of
a sentence, which is just one of the many desired
goals that can be accomplished using GOLI. Simi-
larly, prior works on constrained decoding do not
allow token-level constraints to be imposed and
optimized for, rendering them inadequate for mod-
eling a large class of tasks, including the fMRI task
we evaluate in this work.

6 Discussion

We demonstrate the effectiveness of GOLI in gen-
erating stimuli in two distinct experiment settings.
The minimal pairs task demonstrates how easily
GOLI can be employed to generate a tightly con-
strained set of stimuli. It is infeasible to generate
such stimuli pairs using either templates or by look-
ing in naturalistic corpora.

In the fMRI task, GOLI helped generate stimuli
that are predicted to elicit high or low responses in
the language network in the human brain. Know-
ing which stimuli elicit maximal activity in neurons
can provide useful insight into the representations
and computations that brain areas perform (Hubel
and Wiesel, 2009; Bashivan et al., 2019; Xiao and
Kreiman, 2020). The task—of predicting specific
brain responses—is unique, and we demonstrate
how such goals can successfully be encoded in
GOLI, which even handcrafting does not support.
We highlight the innovative use of θmap as a surro-
gate model to quantify and predict the goal, which
GOLI then uses to guide stimuli generation. It

is possible that the unusual fMRI-high sentences
generated by GOLI are high on surprisal, since
only a few words are abruptly modified in Sgen.
This hypothesis can be confirmed in a follow-up
fMRI study where participants’ brain responses to
GOLI-generated sentences are compared to their
responses to other meaningful sentences with one
or two words randomly swapped out. We will in-
vestigate this in future work.
GOLI in other domains. GOLI can potentially
be used to generate inputs in domains beyond lan-
guage, such as tasks in memory (Barr et al., 2016),
motor-control (Srivastava et al., 2022), planning
in robotics (Aznan et al., 2019), and AI (Chollet,
2019) or in engineering such as circuit design (Liu
et al., 2018), processor design (Ritter and Hack,
2020) and electric machine design (Wang et al.,
2017). In each of these works, the authors attempt
to generate hand-crafted stimuli or inputs in a dis-
crete domain (similar to linguistic stimuli) that are
required to satisfy a suite of constraints their re-
spective problem domains pose.

7 Limitations

Not all tasks in psycholinguistics will readily bene-
fit from GOLI. Many such tasks imaginably may
want to enforce constraints which GOLI may not
facilitate. For instance, state of the art in con-
strained decoding performs poorly for long strings.
Hence, generating stimuli which are long, mean-
ingful while being constrained may be a challenge
for GOLI.

Moreover, it may not be easy to learn θmap for
every problem. Access to a differentiable θmap

which predicts the desired outcome well is essen-
tial. The task of learning θmap, which requires a
labeled data-set, could end up being as expensive
as handcrafting the stimuli in some cases. One way
to alleviate this limitation is through black-box op-
timization (Liu et al., 2020). It enables optimizing
Eq. (4) even in the absence of θmap and gradients.

GOLI is not immune to experimenter biases.
The choice of a loss function and its components,
such as the one described in Eq. (6), biases the
generated stimuli. Moreover, optimal results ob-
tained by the site selection and site perturbation
sub-routines are affected by the inductive biases
used to train θmap and θLLM. Such data-driven
generation methods only ensure the stimuli are not
limited by an experimenter’s word choice and other
top-down assumptions of sentence structures.
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A Algorithm

Algorithm 1 GOLI: A gradient-based sentence transfor-
mation method
1: Input: Random S = {xi}ni=1, model

M = θmap ◦ θLLM; Learning rate α; Loss func-
tion ℓ; Perturbation iterations N ; Number of sites to
perturb k

2: ▷ Site selection
3: T = ORDERBYIMPORTANCE({xi}ni=1)
4: ▷ From Wallace et al. (2019); see Section 3
5:
6: ▷ Site perturbation
7: u = x
8: for j in N do
9: for xi in T do

10: if k > 0 then
11: usoft

i = SOFTMAX(ui)
12: ui= MULTINOMIAL(usoft

i )
13: k = k − 1
14: end if
15: end for
16: ypred= M(u) ▷ Forward pass
17: ∇ = ∂

∂u
ℓ(ypred) ▷ Backward pass

18: u = u − α.∇
19: end for
20: Sgen= u
21: return Sgen

Summary. A backward pass (line 17) allows gra-
dients with respect to the input u to be propagated
from the loss function ℓ. The input is then modified
in the direction of these gradients (line 18), with
the modified input passed to M (line 11-16).

To solve Eq (4) effectively, we relax ui ∈
{0, 1}|V | to ui ∈ [0, 1]|V |. This continuous relax-
ation of binary variables is a commonly used trick
in combinatorial optimization to boost the stabil-
ity of learning procedures in practice (Boyd et al.,
2004).

See Jang et al. (2017); Maddison et al. (2017)
for details on how the softmax (line 11, Algorithm
1) aids in reparametrization of the argmax function-
ality in the categorical case. This is theoretically
equivalent to the Gumbel softmax trick.

Once the continuous optimization problem Eq
(4) is solved, a hard thresholding operation or a
randomized sampling method can be used to map

https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://doi.org/10.24963/ijcai.2019/550
https://doi.org/10.24963/ijcai.2019/550
https://doi.org/10.24963/ijcai.2019/550
https://doi.org/10.18653/v1/2021.acl-long.26
https://doi.org/10.18653/v1/2021.acl-long.26
https://doi.org/10.18653/v1/2021.acl-long.26
https://doi.org/10.18653/v1/2020.blackboxnlp-1.30
https://doi.org/10.18653/v1/2020.blackboxnlp-1.30
https://doi.org/10.18653/v1/2020.blackboxnlp-1.30
https://doi.org/10.18653/v1/D19-1053
https://doi.org/10.18653/v1/D19-1053
https://doi.org/10.18653/v1/D19-1053
https://openreview.net/forum?id=H1BLjgZCb


a continuous solution to its discrete domain. For
the randomized sampling method, we consider u
as probability vectors with elements drawn from a
Multinomial distribution. A Multinomial distribu-
tion models selecting one of the |V | classes when
selecting a token from the vocabulary. We use the
randomized sampling method in our experiments
and follow the setup described in Algorithm 1 in
Xu et al. (2019). See also Xu et al. (2019) for a
proof of convergence of the randomized sampling
method.

When incorporating additional constraints, such
as capitalizing the first word or ensuring the last
word is a punctuation, we sample from a subset of
ui indices. Originally, |ui| = |V |. To sample from
a subset of the vocabulary, say capitalized letters,
we identify the set of indices C in the vocabulary
corresponding to capitalized letters. When sam-
pling from ui, we mask out all those indices not in
C, and sample only from those present in C.

B Minimal-pair counterfactuals task

We reuse all models and hyperparameters described
in the codebase release by (Howard et al., 2022).
Link: https://github.com/IntelLabs/Neuro
Counterfactuals

We do not run NeuroCF from scratch since the
CFs corresponding to their trainsets are publicly
available on their repository: https://github.c
om/IntelLabs/NeuroCounterfactuals/blob/m
ain/output/NeuroCFs-1g/counterfactuals.
pkl

Instead we train their base RoBERTa model
by running evaluate_counterfactuals.py and
augmenting CFs generated by GOLI on their train-
ing set.

To calculate MoverScore distances, we use
the implementation by Zhao et al. (2019), by
installing their codebase from source (commit ID
9c362cc5aea61270e988ea0870bf5ae495cc80a3):
https://github.com/AIPHES/emnlp19-mover
score The version on PyPI is outdated.

We calculate Perplexity scores computed by
GPT-J (Available at https://huggingface.co/d
ocs/transformers/model_doc/gptj).

Howard et al. (2022) do not publish the orig-
inal set of sentences they generate CFs for. We
hence reuse the Moverscore and Perplexity scores
for NeuroCF-1g and NeuroCF-np from Table 4 of
Howard et al. (2022).

B.1 Sentence representations

We obtain sentence representations from the same
fine-tuned BERT SST2 model that we use as θmap.

BERT-uncased, the transformer model on which
the SST model was fine-tuned, has 24 layers (i.e.,
Transformer blocks) and an embedding dimension
of 768. We obtained model representations by tok-
enizing each sentence using the model’s standard
tokenizer (BertTokenizerFast) and passing each
sentence through the model. We retrieved model
representations for each model layer (i.e., at the
end of each Transformer block). The fine-tuned
model uses a sequence summary representation
of each sentence using the special classification,
[CLS], token which is prepended to the sequence
and is standardly used as a token for classification
output (Devlin et al., 2019). We used the pretrained
model available via the HuggingFace library (Wolf
et al. (2020), Transformers version 4.11.3) for our
implementation.

B.2 GOLI settings.

We generate CFs using GOLI by using a BERT-
based fine-tuned SST-2 classifier (available at http
s://huggingface.co/gchhablani/bert-bas
e-cased-finetuned-sst2). We use the follow-
ing settings for GOLI:

• Loss function: BCE

• Desired objective: The opposite of the class
currently predicted.

• Learning rate: 0.01

• Number of perturbation iterations: 10

• Number of multinomial samples per iteration:
20

• Number of sites: Randomly sampled from
{1, 2}

• Max. time taken per sentence: 30 minutes.
We abort processing a sentence if it takes more
than 30 minutes.

• θmap: Fine-tuned classification head in SST2
BERT.

• θLLM: Fine-tuned SST2 BERT.

The runs took an average of 2 minutes per sample.
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C fMRI experiment

We present details of the fMRI experiment in this
section.

C.1 Dataset

We curated a large set (n=1500) of naturally oc-
curring, diverse sentences (note that although not
every stimulus constituted a sentence by some def-
initions, we use the term ‘sentence’ throughout
for convenience) The sentences were obtained by
randomly sampling from N=5 diverse text corpora
spanning three main categories: 1) Published writ-
ten text (The Wall Street Journal Corpus: Paul and
Baker (1992), The Toronto Book Corpus (genres:
fantasy, mystery, adventure): Zhu et al. (2015)),
2) Web media text (Common Crawl C4: Raf-
fel et al. (2020)), and 3) Transcribed spoken text
(The Cornell Movie-Dialogs Corpus: Danescu-
Niculescu-Mizil and Lee (2011), the spoken section
of The Corpus of Contemporary American English:
Davies (2010)). Prior to sampling, the corpora
were filtered to only include 6-word sentences with
printable ASCII characters and had a letter as the
first character. The corpora were preprocessed to
remove repeated/leading/trailing whitespace, strip
whitespace before common punctuation characters
(?.!,:;), append a final period if the last sentence
character was not a punctuation character, and up-
percase the first letter. To obtain a diverse sentence
set, 1000 sentences were randomly sampled from
each of the three main text categories. These 3000
sentences were filtered according to the filtering cri-
teria specified in Appendix C.7. To obtain a set of
1500 sentences, 500 sentences were randomly sam-
pled from each main category to ensure diversity
in final sentence set.

C.2 Participants and data acquisition

A total of 5 neurotypical adults (4 female), aged 21
to 30 (mean: 25; 3.16 std), participated for payment
between October 2021 and April 2022. All partici-
pants completed two scanning sessions where each
session consisted of 10 runs of a sentence read-
ing experiment (sentences presented on the screen
one at a time for 2s with an inter-stimulus interval
of 4s, 50 sentences per run) along with additional
tasks. The participants were exposed to the same
set of 1000 6-word, corpus-extracted sentences (no
repetitions), but in fully randomized order. All par-
ticipants had normal or corrected-to-normal vision,
and no history of neurological, developmental, or

language impairments. All participants were right-
handed, as determined by the Edinburgh handed-
ness inventory (Oldfield, 1971). All participants
were native speakers of English. All participants
gave informed written consent in accordance with
the requirements of an institutional review board
(to be made public after the anonymous review
phase).

Structural and functional data were collected
on the whole-body, 3 Tesla, Siemens Trio scan-
ner with a 12-channel (G1; N=18) or 32-channel
(G2; N=788) head coil. T1-weighted structural
images were collected in 176 sagittal slices with
1 mm isotropic voxels (TR = 2530 ms, TE = 3.48
ms). Functional, blood oxygenation level depen-
dent (BOLD), data were acquired using an EPI
sequence (with a 90 degree flip angle and using
GRAPPA with an acceleration factor of 2), with
the following acquisition parameters: 33 (G1) or
31 (G2) 4 mm thick near-axial slices acquired in
the interleaved order (with 10% distance factor),
3.0 mm × 3.0 mm (G1) or 2.1 mm × 2.1 mm (G2)
in-plane resolution, FoV in the phase encoding (A
» P) direction 192 mm (G1) or 200 mm (G2) and
matrix size 64 mm × 64 mm (G1) or 96 mm × 96
mm (G2), TR = 2000 ms and TE = 30 ms. Prospec-
tive acquisition correction (Thesen et al., 2000) was
used to adjust the positions of the gradients based
on the participant’s motion from the previous TR.
The first 10s of each run were excluded to allow
for steady state magnetization.

C.3 fMRI data preprocessing and first-level
modeling

fMRI data were analyzed using SPM12 (release
7487). Each participant’s functional and structural
data were converted from DICOM to NIfTI for-
mat. All functional scans were coregistered and
resampled using B-spline interpolation to the first
scan of the first session (Friston et al., 1995). Po-
tential outlier scans were identified from the re-
sulting subject-motion estimates as well as from
BOLD signal indicators using default thresholds
in CONN preprocessing pipeline (5 standard de-
viations above the mean in global BOLD signal
change, or framewise displacement values above
0.9 mm; (Nieto-Castanon, 2020)). Functional and
structural data were independently normalized into
a common space (the MontrealNeurological Insti-
tute [MNI] template; IXI549Space) using SPM12
unified segmentation and normalization procedure



(Ashburner and Friston, 2005) with a reference
functional image computed as the mean functional
data after realignment across all timepoints omit-
ting outlier scans. The output data were resampled
to a common bounding box between MNI-space co-
ordinates (-90, -126, -72) and (90, 90, 108), using
2 mm isotropic voxels and 4th order spline interpo-
lation for the functional data, and 1 mm isotropic
voxels and trilinear interpolation for the structural
data. Last, the functional data were smoothed spa-
tially using spatial convolution with a 4mm FWHM
Gaussian kernel.

A General Linear Model (GLM) was used to
estimate the beta weights representing the blood
oxygenation level dependent (BOLD) response am-
plitude evoked by each sentence trial. Specifically,
the data were modeled using the GLMsingle frame-
work (Prince et al., 2022) using a fixed number
of noise regressors (5) and a fixed ridge regression
fraction (0.05). By default, GLMsingle returns beta
weights in units of percent signal change by divid-
ing by the mean signal intensity observed at each
voxel in the brain and multiplying by 100. Hence,
the beta weight for each voxel can be interpreted as
a signal change for a given sentence trial relative
to fixation baseline. To mitigate the effect of col-
lecting data across two separate scan sessions, the
betas from each session were z-scored (i.e., mean
0, std 1) for each voxel in each participant.

C.4 Language-selective brain regions
We were interested in brain responses from
language-selective areas of the brain, and hence
we identified the language network functionally in
each participant using a well-validated fMRI lan-
guage localizer task contrasting sentences with non-
words (defined as the top 10% language-selective
voxels in a set of 5 pre-defined anatomical parcels:
LIFGorb, LIFG, LMFG, LAntTemp, and LPost-
Temp) (Fedorenko et al., 2010). Voxels from these
language-selective areas were z-scored and aver-
aged for each participant, and finally averaged
across partipants to yield a scalar response value
for the average language network associated with
each sentence trial.

C.5 Sentence representations
We obtained sentence representations from GPT2-
XL. The other natural choice was bidirectional-
attention Transformer model BERT-large-cased
(Devlin et al., 2019). We prefer GPT2 over BERT
because it is an auto-regressive model, pre-trained

with the context of words that appear before it as
opposed to the whole sentence. This is considered
to be similar to human behavior. GPT-XL has 24
layers (i.e., Transformer blocks) and an embed-
ding dimension of 768. We obtained model repre-
sentations by tokenizing each sentence using the
model’s standard tokenizer (GPTTokenizer) and
passing each sentence through the model. We re-
trieved model representations for each model layer
(i.e., at the end of each Transformer block). We ob-
tained a sequence summary representation of each
sentence by selecting layer 21 (determined after
cross-validation). We used the pretrained model
available via the HuggingFace library (Wolf et al.
(2020), Transformers version 4.11.3).

C.6 Training θmap

We learned θmap using ridge regression (Scikit
learn RidgeCV). We evaluated hyperparameter α in
the range [10−30, 1029]. We validated θmap using
5-fold cross-validation. We obtained a Pearson R
score per fold, and took the mean of those scores.
The predicted values of θmap were correlated with
the actual brain responses (5-fold cross validation)
with a Pearson correlation of 0.38 (std across folds:
0.03).

C.7 Sentence filtering criteria
The filtering criteria were defined prior to setting
up our experiments. In the following, the term
“token” refers to groups of alphanumeric characters
separated by whitespace.

C.7.1 Automatic filtering criteria
• More than 50% of tokens in the sentence con-

tain numeric characters.

• More than 50% of all characters in the sen-
tence are uppercase.

• The sentence contains one or more tokens that
are longer than 20 characters.

• The sentence contains more than 4 consecu-
tive punctuation characters.

• The sentence contains non-ascii characters
(unicode index larger than 127) or a character
in the following set: ∗ ,@ , [ , \ , ] , / ,< ,=
, > , ˆ , _ , ‘ , { , } , | ,∼

C.7.2 Manual filtering criteria
• The sentence is inappropriate/offensive (e.g.,

contains a racial slur or a taboo word).



• All tokens in the sentence are not English.

• The sentence contains some type of emoji
face, e.g., ":)".

• All tokens in the sentence are trademarks,
website names, brand names, product names,
person names, journal identifiers, journal foot-
ers, date and geographical locations.

• The sentence contains more or fewer than 6
words due to tokenization/punctuation errors.

Referring to the example introduced in Section
3, had the site selection index been 1 instead of 3,
thus selecting the token Run to be replaced, and had
the optimal replaced token been you for this site,
the replaced sentence would then be:

youing slow suits me very well.
This sentence makes little sense despite perhaps
having a predicted neural response close to ydesired.
While we do not impose any constraints on the
generation algorithm itself to handle such cases, we
post-process the generated sentences using the rule-
based filters described above and discard sentences
which fail the imposed filters. We do not filter any
other sentences.

C.8 GOLI settings.
We use the following settings for GOLI:

• Loss function: Squared loss

• Desired objective: +1.2 for fMRI-high, −0.8
for fMRI-low.

• Learning rate: 0.01

• Number of perturbation iterations: 40

• Number of multinomial samples per iteration:
20

• Number of sites: Randomly sampled from
{1, 2, 3, 4}

• Max. time taken per sentence: 30 minutes.
We abort processing a sentence if it takes more
than 30 minutes.

• θmap: Trained, regularized linear regression

• θLLM: GPT2-XL

The runs took an average of 15 minutes per sample.

C.9 Examples of GOLI-generated stimuli
Appended in the following page spanning both
columns.



Seed sentence fMRI-low fMRI-high
I don’t find that particularly funny. This don’t find that particularly funny. Pear don’t find that particularly Cance.
Nice bike 24 fit for teenagers. SourceFile bike 24 fit for teenagers. Trump bike 24 rescuing for condem.
I seem to have been mistaken. Certain hast to have been mistaken. I ecosystems to have been IND.
But the shooting didn’t really improve. Our the shooting didn’t really improve. Edited the shooting didn’t really IND.
This time two men got out. Some time two men got alone. Courtesy sentence two men got INCLUD.
But he may be suffering insomnia. Sure he may be suffering pain. But he Adapter be suffering SER.
I nodded and faked a smile. Members nodded and faked a smile. I nodded and superiors a avg.
That’s been so important for me. He’s been so important for me. ULAR’s been so Huff for Ask.
We thought that might be interesting. Miss thought that might be interesting. Starting fre that happiness be DEC.
Need a case for my Epic! Need a creature for my laughs! ESPN incomp Greenberg for my Said!
Take a look at this, sir. Come a look at this, brave. BILL a look at this, pred.
Privacy should be provided for dressing. She should be provided for dressing. Privacy islands be Dig for pred.
Toomey is up by double digits. Toomey is up by double tackling. Toomey is up by double Fr.
The Blue pointed off to town.. The Blue pointed sped to town.. The Blue pointed rematch to Recommend..
Pay particular attention on her glasses. Mother particular fingertips on her glasses. Pay particular attention Links equate DEN.
And there should be more wood! My there should be more wood! And consumes savvy be more prev!
I think with intelligence and humor. Wild think with intelligence and humor. I Debor with Afghan and compr.
Thy will is now my will. Thy will is now granted initiative. Thy intercourse is now syll contr.
And their coffee can’t be beat! And their composure can’t be beat! And Administration conceptions can’t be Deb!

Table 3: Examples of GOLI-generated sentences for the fMRI task


