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Response to Reviewer #1
We thank you for your constructive feedback, and pointing
out several converging parallels between our work and oth-
ers in NLP. We have added a discussion in our manuscript.
Thank you also for your nuanced observation on using a
paired t-test instead of a stricter 2 samples t-test, since we
compare within a subject. We have stronger results to
report—we now observe that dynamic analysis, one of the
four key hand-selected code properties we evaluated (static,
dynamic, control-flow, data type), is more accurately de-
coded by MD than the language system, and is decoded
more accurately than the static analysis property by the MD.
We discuss the implication of these results below, where we
address your question on the motivation of our work.
Motivation. • Our work aims to examine whether the infor-
mation encoded in ML models trained to understand code
is similar to what we humans encode when we comprehend
code; all ML communities modeling cognitive tasks like
language, vision, etc. care about aligning their work with
how the brain works.
• Further, it is unclear what mechanisms drive our cognition
which enable us to comprehend code. If we find one class of
ML models (say, masked-LMs) to be more predictive than
another (say, autoencoders), then it is reasonable to suspect
that our brains optimize objectives more similar to that of
masked-LMs than that of autoencoders for comprehending
code. In essence, we show how ML models can serve as
tools to reverse engineer our cognitive processes. See also
Caucheteux et al. at ICML 2021 1, who adopt a similar
paradigm to learn more about the language system.
• As a corollary, a poor correspondence between the infor-
mation encoded by our brains and ML models suggests the
possibility of unexplored neural architectures and objec-
tives which may better model our cognition, which in turn
may outperform extant ML models. In light of our revised
results, we present evidence to reconsider the design of cur-
rent neural architectures for code understanding, most of
which do not accommodate dynamic (runtime) information,
one of the core features encoded by the MD system. Our
results suggest code model performance might benefit from
mimicking both the MD and language systems more explic-
itly. We will extend our introduction section to include this
discussion.
Other questions. Thank you for your note on variable
names–we agree; baselines–the figures indeed showed a
common theoretical baseline. We now present each em-
pirical baseline; auditory cortex–yes, code vs. sentence in
auditory is likely related to silent reading during sentence
comprehension (Perrone-Bertolotti et al., 2012); statistical
testing–we provide some details on testing and FDR in Ap-
pendix B currently, but have expanded these explanations,
and have more explicitly added them to the methods section

1https://icml.cc/virtual/2021/spotlight/9272

and figure captions. We omit reproducing those details here
due to space constraints. partial regressions–Visual+MD
vs.Visual can be compared directly as each presents with an
equivalent null distribution, and is a standard ablation test
to determine feature importance. We will highlight all these
details in our draft.

Response to Reviewer #2
Thank you for your thoughtful feedback. We will ensure
to find the right balance in presenting information in the
main draft and the appendix–the current balance is a result
of feedback we received from multiple proof-readers with
different backgrounds.
Why code comprehension. We focus on code compre-
hension because very little of this important skill has been
analyzed from a cognitive neuroscience perspective while
steady advances are being made in training ML models to
understand code and increase programmer productivity. Un-
like in vision, ML models for understanding programming
are direct adoptions of the state-of-the-art in language re-
search. However, recent works we document have shown
that comprehending programs does not share the same neu-
ral bases as natural language comprehension. Do code mod-
els then mimic human cognition of programs? Do language
models mimic? If not, can we think of other objectives
which are directly inspired by results from neuroscience?
These are the open questions we want the community to
address. Our results highlight the importance of modeling
the MD system, which among other things significantly cor-
relates to dynamic (runtime) information. We thus present
evidence to rethink the design and optimization of current
neural code models.
Other questions. Participants–yes, they all had ∼3 years
of Python experience; brain systems–yes, the general class
of stimuli these 4 systems respond to, and the ways to locate
each of these system in any individual are well established.
However, their roles in specific cognitive skills are actively
studied, and our results refine our understanding of the rep-
resentational content of each system. We use the auditory
and visual systems as baselines–they account for noise fluc-
tuations in a neural signal, and low-level stimulus properties
like shapes, colors, etc. respectively; interpretability–the
large voxel feature space is best interpreted with linear mod-
els, as we employ here, and which is typical in the probing
literature; ROIs–Grouping by brain systems, which we reuse
from Ivanova et al., is the best granularity for our questions.
Evaluating finer-grained ROIs is possible, but these subsets
are highly correlated, and their specific differences rela-
tive to their composite systems haven’t been consistently
mapped to interpretable functions or mechanisms.

Response to Reviewer #4
Note: We were notified of a major update made by Re-
viewer #4 with less than 24 hours until the rebuttal dead-
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line. We are hence going over the one-page limit to re-
spond to Reviewer #4; we did not have much to respond
to their previous set of terse comments.
Thank you for the comments.
• We do not understand the reviewer’s claim of our work or
related works being controversial. The claim is misplaced
and the implications of reading code sequentially are ir-
relevant to ours and the work by Ivanova et. al. (and by
extension, Liu et. al.). Peer reviews are publicly available
on eLife - none of them refers to such ‘controversy’.
• Related, the reviewer claims that our work “uses a majority
of recycled references from that (Ivanova et. al.) paper.”
There are >200 citations between the two papers, and only
14 are shared. This reinforces how different our questions
are from what Ivanova et. al. analyze.
• The reviewer makes multiple references to notebook style
writing. It would be helpful if they could articulate what in
the writing style they do not find appealing, and concrete
instances of what they think is notebook style. We are un-
aware of this style and seek to learn and rectify.
• Thanks for referring to Marek et. al., 2022; we are well
aware of this work. They discuss predicting phenotype
behavior using fMRI signals alone. That is neither the
outcome nor the goal of our work–we do not predict
one’s ability to comprehend computer programs or other
such psychometric evaluations by looking at their fMRI
responses. In fact, the section “Importance of small-sample
neuroimaging”, pp. 658 in Marek et. al. strongly supports
our setup and the use of fMRI–which is to isolate anatomi-
cal regions of the brain involved in any cognitive process,
and subsequently find their correspondence to ML models.
See also Caucheteux et al., published at ICML 2021 1, who
adopt a similar paradigm to learn more about the language
system specifically. ECoG and EEG are indeed incredibly
useful modalities for studies that necessitate high temporal
resolution, and in the case of ECoG, broad coverage of a
small region of cortex, but cannot address the questions we
ask here, namely the information encoded in large-scale
spatially-defined brain systems.
• The reviewer mentions “finding above chance accuracies
in a single subject”. Again, we are not classifying between
individuals, but are evaluating each individual separately
and seeing an effect across the entire sample of 24 individu-
als. The fact that every individual scans code “with different
visuospatial strategies” makes our results more robust not
less–we see a significant effect across our entire sample
of 24 different participants, each with allegedly unrelated
strategies.

We encourage the reviewer to re-examine our submission in
light of our clarifications.


