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Abstract
The use of neuro-symbolic methods to supplement
the performance of deep learning based inference
models has witnessed a resurgence. In this work,
we review three sets of recent results in human cog-
nition experiments – in natural language compre-
hension, in natural language inference, and in com-
puter program comprehension - a field bearing sim-
ilarities to natural language. In light of these three
works, we discuss the broader role cognitive neuro-
science can play in informing the design of neuro-
symbolic model architectures for language.

1 Introduction
The use of neuro-symbolic methods to supplement the per-
formance of deep learning based language inference models
has witnessed a resurgence [Ilievski et al., 2020; Wang et al.,
2020; Ma et al., 2019; Oltramari et al., 2020]. While attempts
are constantly being made to improve neural models by incor-
porating external sources of knowledge to make them more
human-like, we ask whether our notion of human-like perfor-
mance on language tasks matches our true abilities.

Evidence from vision has shown how our understanding
of the biology and neuroscience of vision can directly in-
form the design of computational models for specific vision-
related tasks [Pinto et al., 2009; Woźniak et al., 2020;
Shi et al., 2017]. Such evidence for language models is sparse
though. In this work, we survey three recent results in human
subject studies in language and language-like tasks. Two of
these studies investigate brain regions involved in language
tasks, and the other investigates behavioral responses to a lan-
guage inference task. Analyzing results from these studies,
we offer two suggestions on using these results to inform and
improve the design of neuro-symbolic systems.

We first summarize the three studies by describing their
key setup and results, and follow it up with a discussion on
the two insights we have to offer (Section 2).

1.1 Neural regions involved in language
comprehension by Diachek et. al.

This study [Diachek et al., 2020] investigates the neural re-
gions involved in language comprehension. The authors in-
vestigate the following two brain regions which have been

discovered and established over the last two decades. See
[Diachek et al., 2020] for details and references.

Language system. These regions have been identified to
respond to both comprehension and production of natural lan-
guage across modalities (written, speech, sign language), re-
spond to typologically diverse languages (∼ 50 languages,
from across 10 language families), form a functionally inte-
grated system, reliably and robustly track linguistic stimuli,
and have been shown to be causally important for language.

MD system. Generally located in the prefrontal and pari-
etal areas of the brain, Multiple Demand system of regions
[Duncan, 2010] is known to be domain-agnostic, and is acti-
vated in a host of tasks requiring working memory and gen-
eral problem solving skills, including math and logic.

Key results. The authors find that the MD system is not
activated for language comprehension tasks, while the lan-
guage system is consistently activated. Despite language un-
derstanding seemingly requiring logic and symbolic manipu-
lation to be applied – cognitive functions generally associated
with the MD system, the lack of significant activity in the
MD system challenges our intuition of how we cognitively
process language. However, these results do not rule out the
influence of the MD system in our ability to understand and
infer language. The authors suggest that the MD system could
likely be recruited for language production tasks, and in com-
prehension/inference tasks in everyday noisy channel condi-
tions.

1.2 Human performance on NLI tasks by Pavlick
et. al.

In the study by [Pavlick and Kwiatkowski, 2019], the au-
thors analyze human performance on inference tasks in lan-
guage. They study responses to the textual entailment (RTE)
task, which expects conclusions to be drawn about the world
on the basis of limited information expressed in natural lan-
guage. For example, the sentence Three dogs on a sidewalk
being true implies that the sentence There is more than one
dog here is true. They perform this study on 50 human sub-
jects, wherein each subject is presented 100 such entailment
sentence pairs and is required to respond with one of either
entailment, neutral, or contradiction for each pair.

Key results. The authors show that humans consistently
disagree on this task, and report a multi-modal distribution in
their responses. Further, and importantly, they find that the



uncertainty expressed by humans is not captured by state of
the art inference models like BERT fine-tuned on this RTE
task.

1.3 Neural regions involved in program
comprehension by Ivanova and Srikant et. al.

The authors in [Ivanova et al., 2020] studied brain responses
to two programming languages – Python and ScratchJr with
a goal to understand the regions of the brain involved in com-
prehending programs.

They disambiguate two cognitive processes likely involved
in reading and understanding programs – code comprehen-
sion – the act of parsing a snippet of source code and un-
derstanding the meaning conveyed through the syntax and
semantics used in it, and code simulation – simulating the
parsed program to derive and compute the final output. The
latter process mimics the working of an interpreter, and re-
lates to computational thinking, which can be exercised even
without programming knowledge [Guzdial, 2008].

The authors investigate two brain regions which may be
activated in response to these two cognitive processes – the
Language system and the Multiple Demand (MD) system.
See Section 1.1 for a brief description of these two regions.

Key results. This work establishes that code comprehen-
sion does not activate our language system and instead con-
sistently activates the MD system. Further, code simulation
also consistently activates only the MD system.

2 The role of Cognitive Neuroscience
The three different results presented above when read to-
gether suggest the following observations on how cognitive
neuroscience can inform the design of neuro-symbolic sys-
tems.

2.1 Establishing human performance
The study by Pavlick et. al. (discussed in Section 1.2) sug-
gests a partial understanding of our own capabilities and lim-
itations on inference tasks. While recent advances in prob-
ing such language models for various properties [Hewitt and
Liang, 2019; Voita and Titov, 2020] is a step in the right di-
rection in understanding these models better, they focus pri-
marily on interpreting information learned by these black-box
language models. Ambiguity faced by humans during infer-
ence is currently neither explained nor modeled in such lan-
guage models.

There is a need to learn and acknowledge such gaps in
our abilities, and use such results to motivate the design of
‘general-purpose’ language models like BERT and ELMo.
It is unclear though how such reconciliation can be opera-
tionalized. One observation is that neuro-symbolic systems
are trained by integrating external knowledge sources to a
learning model. It is possible that with the right choice of
external knowledge sources, such as formal logic, relational
reasoning, etc., this integration might result in a performance
similar to ours.

We see these ambiguities as litmus tests for any system – be
it fully neural, or neuro-symbolic, in explaining human-like

cognition. Establishing such ambiguities, and having neuro-
symbolic models replicate them will be a worthy initial chal-
lenge. Encoding these ambiguities and integrating them in the
design of neuro-symbolic models can be another challenge to
follow it.

2.2 A case for separate architectures
The two studies in the neural bases of language and pro-
gram comprehension tasks (Sections 1.1, 1.3) provide a dif-
ferent perspective. Despite the assumption that language
tasks involve components of logic and general problem solv-
ing, Ivanova and Srikant et. al. show that they do not activate
the MD system system. If we were to design a cognitively
inspired computational model, this result may suggest that
language tasks are best modeled using an architecture which
solely mimics the language system. However, Diachek et. al.
also suggest that the role of MD system is not well under-
stood for language understanding tasks under noisy condi-
tions, and that the MD system may play a role in such cases.
Whether inference tasks, such as common-sense question an-
swering or the RTE task from Pavlick et. al., are treated as
noisy conditions is yet to be established. Further, results from
Ivanova and Srikant et. al. suggest that program compre-
hension and simulation, which typically entail computational
and symbolic manipulation, strongly activate only the MD
system and not the language system. These results seem to
suggest that there is a need for two distinct architectures to
support the broad range of reasoning and inference tasks in
language that we engage in – one which models the MD sys-
tem and the other the language system. We raise the question
of whether evidence from how we anatomically process and
infer language-related tasks can directly transfer to the design
of neuro-symbolic computational models. It is reasonable to
conceive a neurosymbolic model comprising two sub-models
– one trained exclusively on symbolic and logic-related rea-
soning, and the other resembling a language model.

3 Conclusion
Consolidating results from recent studies in cognitive neuro-
science, we offer two insights which promise to deepen our
understanding of neuro-symbolic models for language. First,
we point the community to studies which establish our own
uncertainties when performing language tasks. We believe
that neuro-symbolic systems may be better equipped to ex-
plain and model these uncertainties. Second, studies on the
neural bases of language and computation might suggest the
need to explicitly model the ‘symbolic’ components of any
language task. We hope to see these ideas validated in future
designs of neuro-symbolic models.
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