
A System to Grade Computer Programming Skills using
Machine Learning

Shashank Srikant
Aspiring Minds

shashank.srikant@aspiringminds.in

Varun Aggarwal
Aspiring Minds

varun@aspiringminds.in

ABSTRACT
The automatic evaluation of computer programs is a nascent
area of research with a potential for large-scale impact. Ex-
tant program assessment systems score mostly based on the
number of test-cases passed, providing no insight into the
competency of the programmer. In this paper, we present
a system to grade computer programs automatically. In ad-
dition to grading a program on its programming practices
and complexity, the key kernel of the system is a machine-
learning based algorithm which determines closeness of the
logic of the given program to a correct program. This algo-
rithm uses a set of highly-informative features, derived from
the abstract representations of a given program, that cap-
ture the program’s functionality. These features are then
used to learn a model to grade the programs, which are
built against evaluations done by experts. We show that
the regression models provide much better grading than the
ubiquitous test-case-pass based grading and rivals the grad-
ing accuracy of other open-response problems such as essay
grading . We also show that our novel features add signif-
icant value over and above basic keyword/expression count
features. In addition to this, we propose a novel way of pos-
ing computer-program grading as a one-class modeling prob-
lem and report encouraging preliminary results. We show
the value of the system through a case study in a real-world
industrial deployment. To the best of the authors’ knowl-
edge, this is the first time a system using machine learning
has been developed and used for grading programs. The
work is timely with regard to the recent boom in Massively
Online Open Courseware (MOOCs), which promises to pro-
duce a significant amount of hand-graded digitized data.

Categories and Subject Descriptors: H.4 [Information
Systems Applications]: Miscellaneous; I.2.6 [Learning]:
General; K.3.0 [Computers and Education]: General

General Terms: Machine Learning; Program Analysis;
Auomated Assessment

Keywords: Recruitment; Automatic grading; MOOC; Fea-
ture engineering; Supervised learning; One-class learning

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD’14, August 24–27, 2014, New York, NY, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2956-9/14/08 ...$15.00.
http://dx.doi.org/10.1145/2623330.2623377 .

1. INTRODUCTION
Automatic evaluation of computer programming skills is a

topic of keen interest today. It adds immense value to the re-
cruitment processes of software development companies and
also to teaching programming in training institutes, univer-
sities and Massively Open Online Courses (MOOCs). In
the recruitment of software engineers, companies generally
ask an applicant to solve a couple of programming prob-
lems which are subsequently discussed in an interview. The
interviewer ascertains the ‘closeness’ of the candidate’s al-
gorithm to the correct solution and considers parameters
such as programming practices used (e.g., dead-code, un-
used variables, etc.) and the time/space efficiency of the
code to make a decision on the programming ability and
algorithm design capability of the applicant. This is a non-
standardized, time-consuming process and the interviewers
are high-cost resources. The automatic assessment of codes
can not only reduce the interview load, but also provide a
report to the interviewer to assist him/her during the in-
terview in highlighting important aspects of the candidate’s
performance. This would not only save time and money, but
would also potentially open job opportunities to a larger set
of applicants, who are missed out currently due to a lack of
automated means.

In an education scenario, the benefits of such an automatic
system are aplenty - first, it reduces the time and effort of
graders - the number of problems given out to a candidate
and the number of candidates being assessed need not be
limited by the availability of graders. Second, it can provide
real-time feedback. Candidates would not have to wait for
the availability of teaching assistants or a faculty member to
learn about the quality of their programs in order to improve
themselves. Currently, the scalability of MOOCs teaching
programming and algorithms is impeded by this constraint,
which such an automatic system would help resolve. Third,
it has the potential to lead to some standardization in the
assessment of computer programs. Assessments today vary
from grader to grader, with no underlying framework of ref-
erence.

A primary aspect of such an automated grading system
is the ability to grade a computer program on the basis of
a rubric.[1][2] Such a rubric typically maps a score (quanti-
tative measure) to the ability of the programmer to solve a
problem. For instance, a high-ranging score could mean that
the candidate’s program is a“correct and efficient implemen-
tation of the problem”, whereas a lower grade could mean
that the candidate’s program “shows emergence of some of
the needed control structures and data operations, but re-

1887

quires improvement”. Such a mapping to a rubric is essential
in order to provide an objective feedback, thereby helping
corporations and academia in making a sound judgment of a
candidate’s ability and helping him/her to write better pro-
grams. For instance, an applicant at the highest level of the
rubric may be hired directly for the job of a software engi-
neer, whereas someone at an intermediate level can be hired
as a trainee and be deployed on projects after a stipulated
training period in or outside the corporation.1

The most widespread approach currently used for auto-
matic assessment of programs is the evaluation of the num-
ber of test-cases they passed[3][4][5][6]. Unfortunately, this
approach is wrought with problems. Programs which pass
a high number of test-cases may not be efficient and may
have been written with bad programming practices. On the
other hand, programs that pass a low number of test-cases
are many-a-times quite close to the correct solution; some
unforced or inadvertent errors making them eventually fail
the suite of test-cases designed for the problem2. Lastly, a
score which is quantitatively defined as the number of test-
cases-passed completely disregards the requirement of the
score to map to a human-intuitive rubric of program qual-
ity.

Another popular approach to the automated grading of
programs makes use of measuring the similarity between
abstract representations (such as Control Flow Graphs and
Program Dependence Graphs) of a candidate’s program and
representations of correct implementations for the problem[7]
[8] [9]. Although promising, the theoretical elegance is dam-
aged by the existence of multiple abstract representations
for a correct solution to a given problem. Secondly, there is
no underlying rubric that guides the similarity metric and
neither are approaches to map the metric to a rubric dis-
cussed.3 Apart from this, there have been publications on
automatic correction of small programs [10] and peer-based
assessments of programs [11], neither of which directly ad-
dresses the problem of automatic grading of programs.

We have designed an automated system to grade computer
programs and produce a detailed feedback report for the
student/interviewer. Firstly, the system grades how close
the program’s logic is to the correct solution, based on a
rubric, using a novel machine learning approach. This ma-
chine learning approach, based on highly-informative fea-
tures derived from abstract representations of a given pro-
gram, is the subject of the present paper. Secondly, the
system provides a score on the programming practices used
in the program based on a rule-based system (rules as in
[12]). Thirdly, it automatically detects the complexity of the
program empirically by running the program for inputs of
different sizes, recording the time to run and fitting a model
to it. Based on these measurements, a comprehensive report
is generated for each submitted program[13].

Specifically, the paper makes the following contributions:

1In India, large IT services companies hire 5000 to 10,000
software trainees every year, who undergo a three month
training before deployment.
2In our own work, we see 40-50% programs falling in this
category. Refer to Section 5 for details.
3Janicic et al. [8] use regression to do so, but on a very
coarse set of features without much room to match the eval-
uation.

• We demonstrate the first machine learning approach
to automatically grade programs based on a rich set of
features.

• We introduce a novel grammar of features which cap-
tures signature elements in a program that human ex-
perts recognize when assigning a grade. In essence,
these features capture the functionality of the pro-
gram. We show these features to correlate well with a
proposed problem-independent rubric.

• We show empirically that the novel features add value
by better modeling human-grading than an elementary
keyword-counts model. (see Section 2 for details.)

• We introduce a framework with a preliminary demon-
stration of how learning can be used to solve the prob-
lem when one is constrained by having available an
unbalanced or a small number of graded programs.

• We demonstrate, by running the algorithm on a sam-
ple of responses for programming problems and a case
study, the practical usefulness of the proposed tech-
nique and program evaluation system.

The paper is organized as follows: Section 2 introduces a
rubric to grade programs and proposes a grammar to gen-
erate informative features from a program. In Section 3, we
discuss a machine learning framework to solve the problem.
In Sections 4, 5, we present the experiment details, case
study of a real-world implementation and results. Finally,
Section 6 discusses the results and future work.

2. FEATURES FOR PROGRAM GRADING

2.1 Decoding the human evaluation process
Our primary motivation to address the problem of au-

tomatic evaluation was to try and understand the aspects
which a manual evaluator, say an interviewer, would con-
sider when grading a program. We understand that for a
given problem, there are certain signature features which
the evaluator looks for. These features are in terms of spe-
cific control structures, keywords or data dependencies be-
ing present in the program. As an illustration, we analyze a
program written for a problem requiring to print a pattern
(see Table 1 for problem statement and the corresponding
program). The sample program is a pseudo-code in which
the declaration statements of variables have been omitted
and a generic syntax to print a variable has been used. This
program is not fully correct as it misses out on printing a
newline character at the beginning of every iteration of the
outer-loop.

Given an integer N, write a
program to print N lines
of the following pattern

1
2 3
3 4 5
4 5 6 7
...

void print lines(int N){
for(i = 1; i <=N ; i++){
count = i;
for(j = 0; j < i; j++){

print(count);
count++;

}
}

}

Table 1: Pattern-printing problem with a sample program

1888

A human evaluator going through the sample program
mentioned in Table 1 would consider the following signature
features -

– Looks for basic keywords - Is a variable’s value being printed?
Are there loops? Are variables being incremented? If they
exist, it demonstrates that the candidate has at least some
basic idea of the constructs needed for the problem at hand.
– Is there a nested loop? Is a print statement included in
the nested loop? If they exist, it can be inferred that the
candidate has realized that a 2-dimensional printing oper-
ation primarily requires a nested loop to access each unit
along the two axes.
– Is the terminating condition of the outer loop based on the
input to the function? Is the terminating condition of the
inner loop dependent on a variable defined in the outer loop?
If yes, the candidate understands that the specific pattern
in the problem demands some relationship between the two
axes to exist, translating to data-dependencies between the
two loops.
– Is the argument to the print function in the inner loop
dependent on a variable which changes its values in each
iteration? Specifically, does it increment by one and get
updated to a value which is incremented by one in each outer
loop? Is there a print statement in the outer loop to control
the newline characters in the pattern? If yes, the candidate
has a very clear understanding of the nuances demanded by
the problem.

Table 2: Rubric to grade computer programs

SCORE INTERPRETATION

5

Completely correct and efficient:
An efficient implementation of the prob-
lem using the right control structures, data-
dependencies and consideration of nuances/-
corner conditions of the logic.

4

Correct with silly errors:
Correct control structures and critical data-
dependencies incorporated. Some silly mistakes
fail the code to pass test-cases.

3
Inconsistent logical structures:
Right control structures exist with few/partially
correct data dependencies.

2
Emerging basic structures:
Appropriate keywords and tokens present, show-
ing some understanding of a part of the problem.

1
Gibberish Code
Seemingly unrelated to the problem at hand.

It is evident that with the appearance of each set of signa-
ture features, in the order described above, a human evalu-
ator would provide a higher score - the absence of the right
keywords would receive the lowest score; the presence of the
right keywords would be awarded some points; the presence
of a nested loop structure would be awarded some more;
the presence of data-dependencies between the loops would
be awarded a relatively high score, with the best score be-
ing awarded to those programs which have all the problem-
specific nuances such as the right re-initialization in the
outer loops and a newline character being printed in the

right loop, in addition to having all other features mentioned
thus far.

This simple approach helps motivate both - the design of
a grading rubric and the identification of the right features
in a program which would predict it’s correctness.

At this point, we urge the reader to exercise caution and
not be misled by the apparent simplicity of the illustration
described above. The implementation discussed above may
be written with numerous variations - while loops replacing
the for loops, varying number of variables and expressions,
varying data-structures (use of 2-D arrays) and even varying
algorithms (recursion to iterate). The question of grading
the program remains hard and such a simplified illustration
acts as a primer to understand the nuances involved in the
process.

2.2 Evaluation Rubric
Guided by the observations mentioned in the previous

Section, we present in this Section a problem-independent
rubric to grade a program solving a programming problem.
For any program, we define the state it is in by considering
how much it has advanced in solving the given problem. The
semantics used in the program i.e. the kind of keywords, ex-
pressions, control structures and data-dependencies specific
to the problem at hand help decide how well developed a
solution it is.

The rubric is presented in Table 2. It objectively captures
the program’s state which, we hypothesize, links to the can-
didate’s ability to develop an algorithm for a given problem.
It can be used across problems and leaves scope to be more
detailed and fine-grained.

2.3 Grammar of Features
In this Section, we describe a grammar of features which

helps in establishing a congruence between a program and
the functionality it performs. Motivated by the rubric’s de-
sign, the features capture various states of expressions, con-
trol structures, data-dependencies and other properties that
exist in a program. We present the features as belonging to
broad classes, where each class categorises them by the un-
derlying property they capture. Since the states mentioned
in the rubric attempt to capture how well developed an al-
gorithm is, these features are applicable to a program writ-
ten in any programming language. Moreover, being generic,
they are invariant of the underlying problem and to any par-
ticular implementation of a given problem. The details of
these classes are as follows -

a. Basic Features: This class includes features obtained
by counting the occurrences of various keywords and tokens
appearing in the source code. These include keywords re-
lated to control structures such as for, while, break, etc.,
operators defined by a language like ‘+’,‘-’,‘∗’, ‘%’, etc., char-
acter constants used in the program like ‘0’, ‘1’, ‘2’, ‘100’,
etc., external function calls made like print(), count(), etc.

These counts are useful to see whether the right con-
structs even appear in a program (characterstics of Score 2,
Table 2) irrespective of whether the control-flow and data-
dependencies are right.

b. Expression Features: This class includes features ob-
tained by counting the occurrences of expressions appearing
in a program. An expression in a programming language is

1889

Figure 1: Control & Data Information of Sample Program

a combination of explicit values, constants, variables, opera-
tors and functions. The expressions used in a program help
identify arithmetic and relational operations typical of the
underlying algorithm.

These expressions can be described with a varying degree
of detail. For instance, the counts can either be charac-
terized by the operators used, or by the external functions
called, or by the constants used (such as ‘+’, ‘-’, ‘print’,
‘100’ etc.). These could further be classified by counting
specific instances of each such operator, function-call etc.
or by counting the total operators, function-calls etc. that
appear in an expression. In our work, we capture operator-
specific and data-type-specific information to count the dif-
ferent types of expressions used in a program. Table 3 il-
lustrates a few examples of expression-features and provides
their significance.

c. Basic & Expression Features in Control Con-
text: This class includes features obtained by counting the
occurrences of various expressions, keywords, tokens etc.
(described in (a) and (b) above) in context of the control-
flow structures they appear within. A context here signifies
a block-scope extended by a control-structure to which a
section of the program belongs to. A control-flow struc-
ture could include loop-statements (for, while, do-while,
etc.) or conditional-statements (if , if -else, switch, etc.).
In essence, these features give us the control structures the
features described in (a) and (b) belong to. As in the earlier
class of features, the control context too can be character-
ized by varying levels of details - counts could be specific to
instances of loops and conditionals like for, if or could be
generic to the occurrence of loops irrespective of whether it
is a for or a while. Counts could also vary by the depth of
the nested structures, where only the most recent context
could be counted as against counting the exact context the
expressions/keywords appear in. In our work, we do not
differentiate between different instances of loops and condi-
tionals and work with exact depths of contexts.

For the sample problem on printing a pattern, the CFG
(see Fig. 1) reveals the presence of two occurrences of the
post-increment operator (in count++ and j++) appearing
in a nested-loop and one occurrence (in i++) within a single-
loop. This class of features would correlate to Score 3 in the
rubric (Table 2)

d. Data-Dependency Features: This class includes fea-
tures obtained by counting the occurrence of particular kinds
of expressions which are dependent on other particular kinds
of expression. Here, an expression refers to the features
mentioned in (b). A data dependency is defined as any hier-
archical ordering observed in the Data Dependency Graph
(DDG) of the program. Such an ordering between two ex-
pressions generally signifies that the value of a variable(s) in
one expression influences the evaluation of the other expres-
sion.

As an example illustrating this feature in the sample pro-
gram, the occurrence of an edge from the node i++ to
count = i in the DDG of the sample program (see Fig. 1)
suggests that the increment on i would affect the value of
the variable count in the expression count = i. Similarly,
the edge from i++ to j < i suggests that the evaluation
of the expression j < i is dependent on the increment on
j happening in the expression j++. It is to be noted that
these counts are generic and are not tagged to any particular
variable in the program.

As in the previous classes of features, this class of features
too can be characterized by varying levels of details - the de-
pendencies could be listed out for an expression as a whole
or could be specifically listed out for each variable appear-
ing in an expression. The depth of the dependency captured
could also vary - the dependencies could be restrained to the
most recent expression which affects the current expression
or could be traced back to n dependent expressions. Addi-
tionally, the various details of what constitutes an expres-
sion, as discussed in (b), can be incorporated here. In our
work, we count the most recent dependency between each
variable appearing in an expression separately.

e. Data-Dependency in Control Context: This class
includes features obtained by counting the data-dependency
features mentioned in d. in the context of the control struc-
tures they appear in. These features capture the specific
functionality of a given program and are derived through a
control-context tagged data-dependency graph of the pro-
gram (see Fig. 1).
For e.g. in the illustration that has been provided in d., the
expressions pertaining to the edge i++ to count = i would
additionally be annotated with a loop for the count = i ex-
pression as it appears within a for loop and the expression

1890

Table 3: Sample features and their interpretation

Feature Interpretation

LP LP

{Basic}

The number of times a nested loop (a for-
in-a-for or a while-in-a-for etc.) appears
in the program

%::LP IF

{Basic c.c* }

The number of times a modulus operator
(%) appears in a nested conditional-in-a-
loop. The operator appearing in a state-
ment like
for{.. if(x%2==0)..}
would be captured by this feature

v:1::op:%::c:‘2’

{Expression}

The number of times an expression con-
taining a modulus operator (%), one vari-
able and the constant 2 appears in the pro-
gram. An expression like x%2==0 would
be captured by this feature

v:2::op:!= ::IF

{Expression c.c*}

The number of times an expression con-
taining a not-equal-to operator (!=), two
variables and no constants appears in an
if block in the program. An expression
like ..if(x!=y).. would be captured by this
feature

v:2::op:<
↑

v:1::op:++

{Data-dep}

The number of times an expression con-
taining a relational operator (<) and two
variables is dependent on an expression
containing a post-increment operator and
one variable

v:2::op:<::LP LP
↑

v:1::op:++::LP

{Data-dep c.c*}

The number of times an expression con-
taining a relational operator (<) and two
variables, which appear in a nested loop,
is dependent on an expression containing a
post-increment operator and one variable
appearing in a loop

* c.c : in control-context

feature pertaining to i++ too would be annotated with a
loop as it appears within a for loop.

It must be noted that the features described in (d) and
(e) are of critical importance as they help identify a pro-
gram belonging to a crucial level of the rubric (Score 4 and
Score 5, Table 2). They identify whether a candidate has
understood an algorithm and has made use of key data and
control dependencies in implementing his/her understand-
ing.

f. Other Features: In addition to the features extracted
from the control and data information of a program, other
metrics may be used to predict how good a given program is.
Such metrics can include - the number of lines in the source
code, metrics in graph theory pertaining to the generated
Abstract Syntax Trees (AST), Control Flow Graphs (CFG)
and/or Data Dependency Graphs (DDG) such as the num-
ber of vertices, the number of edges, the height of the tree,
the number of in-edges and out-edges etc. Additionally, the
number of test cases a source code passes could also be used
as a feature.

All the features mentioned above can be extracted from
a combination of either the AST of a program, its CFG, its
DDG and its Program Dependence Graph. An implicit ad-
vantage which these structures provide is the independence

of the feature extraction process with the compilability of
the code. As long as the source code follows the grammar
of the program strictly, these features are easily extractable.
This generally is of great utility when a candidate is un-
able to complete his/her program in the specified time and
submits a partial solution to the problem.

3. MACHINE LEARNING APPROACH
We cast the problem of automatic grading in the standard

machine learning framework - where programs attempted
for a given problem are rated by experts, following which
a regression model is developed based on the proposed fea-
tures. Given that a large number of features are generated,
which include sparse features, a feature selection (or feature
clustering) step may provide better modeling generalization.
Clustering features in the given problem domain is intuitive,
since more than one feature or feature-combinations may
represent the same functionality. This can be done using
techniques such as Principle Component Analysis, Factor
Analysis, k-Means or by Latent Semantic Analysis (LSA)-
a popular technique in the essay-grading literature.4

One advantage of using unsupervised methods is being
able to use and extract information from ungraded samples
as well. On the other hand, techniques such as forward
selection, best subset selection, ridge regression, ensemble
modeling can be used for supervised feature selection. In
the experiments which follow, we use some simple feature
selection techniques followed by the regression techniques
of linear ridge regression, random forests and kernel-based
SVMs. Ridge regression shrinks the feature weights leading
to implicit feature selection.

One-Class Modeling: The approach of using regression
to build a model entails the requirement of a domain ex-
pert to be involved to rate the programs for each problem
manually. In an attempt to do away or reduce this require-
ment, we also explore a novel way of posing this as a prob-
lem in one-class modeling. We do so by identifying high
quality codes amongst the candidate submissions using an
automatic technique which looks at the number of test cases
passed, programming practices used and the complexity of
the code (discussed in Section 5). If the feature set indeed
captures the functionality of the code and mimics the rubric,
then a simple distance from these identified high-quality so-
lutions in the feature space could provide the right grade (af-
ter some scaling). Whereas this distance approach mimics
the neighborhood approaches prevalent in one-class classifi-
cation (even though it is not classification), other approaches
such as one-class SVMs, density estimation methods, etc.
may also be used [17]. Moreover, the unsupervised cluster-
ing approaches mentioned previously may also be used to
cluster these programs. In this work, we show a prelim-
inary demonstration of using a simple one-sided, absolute
distance measure to predict grades and judge the efficacy of
using one-class modeling for the problem at hand.

4. SYSTEM DESIGN
We designed Automata, a delivery and evaluation system

for testing computer programming skills. It provides an on-

4Such clustering may also be done using expert-knowledge as
done through Wordnets etc. in Natural Language Processing
[16].

1891

http://www.aspiringminds.in/researchcell/articles/aspiringminds_launches_automata_pro_the_worlds_most_advanced_simulated_programming_assessment.html

line compiler-based simulated environment for applicants to
code. Generally, a test contains two programming prob-
lems. Each problem has a suite of test cases which checks
basic and advanced conditions of the logic of the problems.
The candidates have the option to edit, compile and check
the correctness of their code on these suites as many times
as they chose to before submitting final solutions. Based on
the programs of the candidate, a detailed report is gener-
ated[13]. The report provides a total score and one score
each on Programming Ability and Programming Practices.
The first score is based on the grade of the program on the
rubric (based on machine learning) and also on its empiri-
cally detected time complexity. The second score is based
on a rule-based system (rules similar to [12]) that identifies
bad programming practices. A final total score is provided,
which is an average of these scores. Automata has been
taken by more than 200,000 students and currently used by
20+ companies for recruitment purposes.5

5. EXPERIMENTS
We wanted to investigate the following questions with our

experiments:

• How accurately can a machine learning approach based
on our novel feature set predict grades as compared to
grades given by human assessors?

• Do features derived from keywords, control-structures
and data-dependencies (see Section 2) add additional
value in grade prediction over and above test-case based
prediction?

• Do data-dependency and control-flow features add value
over basic counts in the prediction and if so, by how
much?

• What is the potential of one-class classification tech-
niques in predicting accurate grades for programs, if
only a set of high quality programs are available?

• What is the practical advantage of such a system in a
real-world recruitment scenario?

To answer these questions, we conducted experiments on
five programming problems which were graded by domain
experts. The problems were chosen such that the algorithms
to solve them required different control-flow structures and
data-dependencies to exist in implementations. We experi-
mented with three machine learning techniques- Ridge Re-
gression, SVMs and Random Forest, combined with different
feature selection techniques. To test the efficacy of different
feature sets, we built models by various combinations of fea-
tures. We also did preliminary investigations with one-class
modeling techniques. We now discuss the details of the data
sets used in the experiments.

5.1 Data Sets
We considered five programming problems, named in the

first column of Table 4. Broadly, in Encrypt, one has to
add numbers to each character based on its position in a
string; in Alt Sort, one has to sort a given list of numbers

5While all these candidates were tested on our delivery plat-
form, they weren’t necessarily graded by our machine learn-
ing approach. The deployment of machine learning was re-
cent, happening at the time of writing this paper.

and return the alternating elements, in Find Digit, one is
given a multi-digit number and a digit and s/he has to find
the number of times the digit appears in the number; in List
Primes, one has to list out all the prime numbers less than
a given number and in Print Spiral, one has to print N lines
of a spiralling pattern of digits. The problems are above the
beginners’ level in programming and requires a fair amount
of competence in algorithms.

We used a sample set of programs written in C solved by
senior-year undergraduate engineering students majoring in
Computer Science in India. Each program was rated on a
scale of 1-5 following the rubric defined in Section 2. Any
program with no code or less than 5-6 lines of uncorrelated
code was removed from the data set. The ratings were done
by two experts who had more than three years of experience
in professional software development and were active par-
ticipants in algorithmic programming contests. A consensus
of the ratings of the two experts was taken. For programs
where their grades did not match, they discussed the codes
and reached a consensus. The number of graded samples for
different problems varied from 84 to 294 (mentioned in first
column of Table 4)6.

The data-sets for each problem was split into two sets -
training and validation. The train-set had 66% of the sample
points whereas the validation-set had 33%. The split was
done randomly taking care that the grade distribution in
both the sets remained proportional. The total number of
features generated for each problem are provided in Table 6.

Table 4: Performance across models - All features

Problem Model # feat CV Correl Val r

Encrypt Ridge 80 0.85 0.79
(N = 106) SVM - RBF 440 0.70 0.10

Random Forest 87 0.96 0.29

Alt Sort Ridge 68 0.93 0.91
(N = 84) SVM - Linear 138 0.94 0.45

Random Forest 56 0.98 0.68

Find Digit Ridge 193 0.91 0.90
(N = 235) SVM - Linear 164 0.96 0.76

Random Forest 56 0.99 0.86

List Primes Ridge 66 0.90 0.90
(N = 280) SVM - RBF 85 0.90 0.60

Random Forest 172 0.99 0.82

Print Spiral Ridge 87 0.81 0.82
(N = 294) SVM - RBF 123 0.90 0.60

Random Forest 129 0.98 0.81

*N : Sample size for the problem

5.2 Regression Modeling
We used feature selection followed by a regression with

3-fold cross-validation to model the grades. We used lin-
ear ridge-regression, SVM-regression (with different kernels)
and Random Forests to build the models. The best cross-
validation correlation was used for selecting the model. We
used some simple techniques for feature selection, which

6Sample sizes are lower for the first two problems owing to
their greater difficulty and removal of short/unrelated code
samples

1892

Table 5: Ridge Regression Results

Problem Feature Type Model Code # Features Cross-Val Correl Train r Validation r

Test Cases Enc-RR-TC 3 0.39 0.39 0.54
Encrypt

Basic Enc-RR-B 60 0.62 0.87 0.41

All, w/o Test Cases Enc-RR-AwTC 35 0.57 0.72 0.56
All Enc-RR-A 80 0.61 0.85 0.79

Test Cases Sort-RR-TC 3 0.76 0.77 0.80
Alt Sort

Basic Sort-RR-B 26 0.59 0.72 0.67

All, w/o Test Cases Sort-RR-AwTC 80 0.81 0.99 0.80

All Sort-RR-A 68 0.77 0.93 0.91

Test Cases Digi-RR-TC 3 0.66 0.70 0.64
Find Digit

Basic Digi-RR-B 26 0.74 0.89 0.74

All, w/o Test Cases Digi-RR-AwTC 190 0.87 0.97 0.90

All Digi-RR-A 193 0.91 0.98 0.90

Test Cases Prime-RR-TC 3 0.74 0.75 0.80
List Primes

Basic Prime-RR-B 35 0.83 0.88 0.69

All, w/o Test Cases Prime-RR-AwTC 134 0.85 0.91 0.82

All Prime-RR-A 66 0.90 0.94 0.90

Test Cases Spiral-RR-TC 3 0.83 0.83 0.84
Print Spiral

Basic Spiral-RR-B 40 0.61 0.78 0.61

All, w/o Test Cases Spiral-RR-AwTC 166 0.66 0.81 0.64

All Spiral-RR-A 87 0.81 0.92 0.84

included choosing the most correlating features, features
which were most represented in the sample programs and
the most correlating/represented features in each class of
features. We swept over a threshold to vary the number of
features used in building a model. We also experimented
with randomized sparse models (using LASSO)[18] which is
supposed to work well in cases with large number of highly
correlated features. Its results consistently underperformed
those of our simple techniques and are hence not reported
for paucity of space. Our preliminary hypothesis for its un-
derperformance is the high sparsity of our features.7 The
method of selecting the most represented features gave best
results (cross-validation correlation of final model).

Experiment parameters: For linear regression with ridge
regularization, we selected the optimal ridge coefficient λ
by varying it between 1 to 1000 and selecting the parame-
ter which gave us the best cross-validation correlation. For
Support Vector Machines [14][15], we tested three kernels:
linear, polynomial (3rd degree) and radial basis function.
In order to select the optimal SVM, we varied the penalty
factor C, parameters γ and ε, the SVM kernel and selected
the set of values that gave us the best correlation in cross-
validation. For Random Forests [14], we varied the number
of estimators from 20 to 100 and allowed for bootstrapping.
MSE was used a criterion to select between models. In the
feature selection step, the number of features selected was

7We tried PCA to cluster features which did not yield good
results. We did not attempt other sophisticated clustering
of features due to very small number of samples as compared
to the feature set size, which we plan to do in future.

varied from selecting those which appeared at least in 5% of
the data-set to at least 50% of the data-set.

The experiments were done on four sets of features: first,
a set of three test case features which captured the percent
of basic, advanced8 and edge cases the program passed; sec-
ond, features pertaining to counts of keywords, tokens, ex-
pressions (without control context) and other metric-based
features (see Section 2); third, all features introduced in
Section 2 and fourth, all features together with the test case
features.

In the following subsections, the features pertaining to
keyword and expression counts without control context are
referred to as basic features while those pertaining to data-
dependencies (including control context) are referred to as
advanced features. These features collectively are referred
to as semantic features.

5.3 Observations
The results of the experiment with different machine learn-

ing techniques are tabulated in Table 5. These are results
for the models selected according to best cross-validation
correlations. We report the Pearson Correlation Coefficient
(r) for the different models. The number of features used
in these models is mentioned in Column 3. The best cross-
validation correlation in case of SVM was produced by the
linear kernel for problems 2 and 3 and RBF kernels for prob-
lems 1,2 and 5.

8Advanced Cases contain pathological input conditions
which attempt to break codes implementing partially cor-
rect formulations of an algorithm.

1893

Ridge regression consistently shows the best validation re-
sults and we consider its results (tabulated in detail in Ta-
ble 5) for further analysis. We hypothesize that ridge re-
gression’s inductive bias rightly captures the problem space.
For all the problems, we see that the set of semantic fea-
tures (models with postfix -AwTC, Table 5, Column 3) does
better than the set of basic features (models with postfix -
B). The difference in performance varies from 0.13-0.16 cor-
relation points (validation) for the problems, whereas it is
0.03 in case of Print Spiral. This clearly shows the utility
of the advanced features in explaining the variance in hu-
man graders. To study this further, we analyze the type
of features selected in the models with postfix AwTC (all
features, without test-cases) (see Table 6). In all cases but
one, the number of advanced features selected are more than
the number of basic features selected, indicating their impor-
tance. The significant improvement in correlation values and
considerable use of advanced features in the models demon-
strate the utility of the innovative features developed.

Table 6: Class-wise selected features

Model Code # Test-Case # Basic # Adv Total

Enc-RR-A 1 39 40 80
Enc-RR-AwTC 0 24 11 35

Sort-RR-A 2 26 51 79
Sort-RR-AwTC 0 28 52 80

Digi-RR-A 3 44 146 193
Digi-RR-AwTC 0 44 146 190

Prime-RR-A 1 30 35 66
Prime-RR-AwTC 0 40 94 134

Spiral-RR-A 1 31 55 87
Spiral-RR-AwTC 0 43 123 166

Total Features
Encrypt 3 164 4017 4184
Alt Sort 3 82 1586 1671
Find Digit 3 161 1269 1433
List Primes 3 266 1818 2087
Print Spiral 3 198 2117 2318

Additionally, we see competitive performance between test-
case models (models with postfix -TC) and models using se-
mantic features (models with postfix -AwTC). The models
built using both, semantic features and test-cases (models
with postfix -A) show better or equivalent r than test-cases-
only and semantic-features-only models. The validation cor-
relation for the models with all features range from 0.79-0.9
across the five problems and from 0.54 to 0.84 for test-cases.
It may thus be concluded that the use of our new feature
set considerably improves the accuracy for the problem of
grading computer programs.

We now analyze how well our best models (models with
suffix -A) do in case they were used in a real-world sce-
nario. We find the deviation of predicted scores from their
corresponding expert-assigned scores, in the validation set.
As seen in Table 7, we find that more than 80% of the pre-
dicted grades are within a 1-grade shift from it’s correspond-
ing expert-rated grades. Only a maximum of three codes in
every problem are predicted grades which are greater than
2-grade shifts away. We also discretized the scores to map

Table 7: Deviation of Predicted Score : Regression

Score Shifts vs. # of Codes
Problem

#Val 0-1 1-2 2-3 3-4 >4

Encrypt 34 28 5 1 0 0
Alt Sort 27 23 4 0 0 0
Find Digit 77 72 4 1 0 0
List Primes 92 78 11 2 1 0
Print Spiral 97 79 15 2 1 0

them to a level of the rubric. The discretization was done by
learning thresholds on the training-set for each score level
such that the distribution of the predicted-scores vs. ac-
tual scores was the same. As an illustration, the confusion
matrix of the expert-assigned scores versus the discretized
predicted scores are provided for two of the five problems in
Table 8 for the programs in their validation-set

Table 8: True vs. Discretized Predicted Scores

Encrypt

Predicted Scores
1 2 3 4 5

1 3 1 0 0 0

2 1 3 1 1 0

3 0 2 3 2 0

4 0 1 4 9 1

5 0 0 0 0 1

List Primes

Predicted Scores
1 2 3 4 5

1 20 3 2 0 1

2 2 5 1 1 0

3 0 1 8 1 1

4 0 0 2 5 4

5 0 0 0 2 33

We find that only two codes (5.8%) have more than 1 level
shift for the Encrypt problem, whereas there are 4 (4.3%)
for the List Primes problem. In Encrypt, 55.5% codes have
the correct grades (owing to its lower validation correlation),
whereas List Primes has 77.2% correct grades.

These results indicate that our approach is robust enough
to be used in applications where a one-level shift is accept-
able for a limited number of cases. One finds similar corre-
lation values and confusion matrices in automatic scoring of
essays wherein such methods have found their way into high-
stake assessments[19]. Likewise, such confusion between ad-
jacent levels may also be observed between two expert raters.
To study this further, we would have to find correlation and
confusion between multiple expert raters and also see if the
automatic score has better correlation with their consensus.

5.4 Feature Insight
We wished to see what insight could be derived by looking

at the features picked up by machine learning for a problem.
This could not only help automatically discover important
logic elements needed in a correct solution of a problem,
thereby enabling us to give feedback/hints to students on
what constructs to use while solving a problem, but also
help design better features. As a preliminary step towards
this goal, we show the most contributing feature for Find
Digit from the high performing ridge-regression model.

Dep@Var:1,Op:!=,Const:1#input:m LOOPc
↑

Var:1,Op:/,Const:1#input:m LOOPb

The pseudo-code equivalent of the above described fea-
ture is shown in Table 10, left column. The algorithm to

1894

Table 9: Correlation - Distance metric

All Features Only Basic
Problem With training Without training With training Without training

Mean Min25 Min Mean Min25 Min Mean Min25 Min Mean Min25 Min

Encrypt 0.57 0.61 0.55 0.65 0.65 0.51 0.52 0.56 0.57 0.59 0.63 0.54
Alt Sort 0.80 0.83 0.83 0.80 0.83 0.83 0.72 0.75 0.73 0.68 0.69 0.70
Find Digit 0.75 0.81 0.84 0.72 0.80 0.77 0.59 0.73 0.75 0.56 0.67 0.67
List Primes 0.81 0.81 0.66 0.76 0.78 0.54 0.75 0.75 0.63 0.65 0.66 0.48
Print Spiral 0.68 0.69 0.72 0.58 0.58 0.52 0.55 0.61 0.62 0.49 0.51 0.48

solve Find Digit (see Section 5.1 for problem details) re-
quires each digit of the multi-digit number to be extracted
and checked for equality against the input digit. The fea-
ture describes a dependency condition in control context:
the input (N) is used in the condition of a loop with a ! =
operator and a constant, which depends on an assignment
made to it within the body of the same loop (dependence
becomes clear if one unrolls the loop), where it is assigned
an expression using a / operator and a constant. Clearly,
this is a general logical structure which occurs in one of the
basic implementations for the problem as illustrated in the
right column of Table 10. The automatic discovery of this
structure, which humans will look for in a correct imple-
mentation, illustrates the power of the technique and also
a first step towards getting qualitative insight into problem
solutions through machine learning.

...
LOOP(N ! = const){
...
N = N/const
...
}

...

int find digit(int N, int digit){
while(N != 0){

d = N %10;
if(d == digit)

...
N = N/10;

}
}

Table 10: Most contributing feature - Pseudo code

5.5 One-Class Modeling
We do a preliminary investigation of using only a set of

high-quality codes for the purpose of prediction. The idea is
to automatically find high-scoring codes to build a predictive
model thereby reducing the effort invested in hand-grading
programs. We identified a set of high scoring codes for the
problems in the following way- we took a subset of codes
(referred to as good set) which passed more than 80% of the
test-cases, solved the problem in the right time complexity
and followed programming best practices. The number of
codes this conservative filtering yielded is recorded in Table
11. Their overlap with their expert-assigned scores is also
shown.

Given a small number of programs in the good set for
some problems, the use of machine learning techniques was
impeded. Thus, to predict scores, we decided to define the
distance of a given code from the good set in the feature
space. We used a simple one-sided distance metric, in which
having less of a feature was penalized whereas having more
was not. This was done with the intuition that having more
of a particular feature was generally not indicative of an in-
correct code. We kept the same weight for all features, which

Table 11: True Scores of Filtered Programs : One-Class
Approach

True Scores
Problem

1 2 3 4 5 Total

Encrypt 0 0 0 22 5 27
Alt Sort 0 0 0 2 10 12
Find Digit 0 0 3 15 130 148
List Primes 3 0 0 9 93 102
Print Spiral 0 1 0 1 149 150

could have potentially been learnt had there been enough
data. Our method is akin to neighbourhood approaches in
one class classification.

We provided scores to the programs based on the distances
calculated using just the basic features and all the semantic
features (including the test-case features). In order to cal-
culate a score for a given program, we first sum the distance
of the program from the good set. This provides a distance
of the given program from each of the programs in the good
set.We then employ three methods - a. consider the mean of
these distances b. consider the minimum of these distances
and c. consider the mean of the least 25% of the distances.
We hypothesized that the mean metric shall be noisy given
that the good set would have codes implementing different
algorithm strategies. On the other hand, the minimum of
the distances would be noisy given the presence of outlier
codes (columns 1,2 and 3 of Table 11). The mean of the
least distances is a good trade-off. Interpreting it differently,
it attempts to identify the cluster (algorithm strategy) the
current program belongs to and finds the distance from it.9

The correlations between the calculated distance and the
expert-assigned scores are tabulated in Table 9. We pro-
vide correlations with and without including the train-set
from which the distance is measured. Using the train-set
is not entirely incorrect in this context since it is automati-
cally determined (as opposed to usual machine learning ap-
plications) and has been graded automatically, mimicking a
real-world scenario which the system shall encounter. Akin
to our observations in the supervised learning setting, we
find that scores from distances across all features outperform
those only from basic features. Secondly, we find Min25 to
provide the most consistently high performing results. This
indicates a validation of our hypothesis regarding the exis-
tence of clusters and outliers codes in the good set.

9In future, for problems with larger sample sizes, we intend
to cluster codes in the good set using unsupervised clustering
algorithms and find distances from the clusters.

1895

5.6 Case Study
We studied the deployment of Automata at a hiring event

of one of Aspiring Minds’ large IT-product customers. The
event had a turn-up of 1050 applicants for a software engi-
neering job. They were tested on two programming prob-
lems (List Primes and Encrypt from above set) in a 75 min-
utes test. The customer’s default shortlisting criterion was
to consider candidates who cleared at least 80% of the test-
cases.

Figure 2: Case study - Extant approach vs. Automata

Based on the test, candidates above a programming abil-
ity score of 78 were shortlisted, which maps to score 4 on
the rubric. We studied how these results would have been
affected had we used the test-case pass criteria (Fig. 2).
For a test-case pass rate of 80%, 58 candidates would have
been shortlisted. Among the 20 extra candidates, only 3
were outliers as inspected by the interviewers. This implies
that the test-case criteria would have missed 22.6% (17

58+17
)

of the good candidates as compared to our approach.10 On
the other hand, there were 4 candidates who were accepted
by test-case, but rejected by our scoring: two of these had
hard-coded the logic in their implementations(thus rightly
rejected), whereas, 2 of them were outliers. Of the final
offers made, 45% more selections were made from the top
50% scoring students. This preliminary case-study demon-
strates how our approach gives immediate benefit and pro-
vides guidance to interviewers by reducing type-2 errors.

6. CONCLUSION
The present work proposes a system to automatically grade

computer programs using machine learning. To facilitate the
same, we design an objective rubric and a novel set of fea-
tures that capture the program’s functionality. We show
that regression against expert-grades can provide much bet-
ter grading than the ubiquitous test-case-pass based grad-
ing and rivals the grading accuracy of other open-response
problems such as essay grading. We also show that our novel
features add significant value over basic keyword/expression
counts. Our preliminary investigations in one-class model-
ing show great promise and also indicate implicit correlation
between the proposed novel features and the rubric. Fi-
nally, through a case study, we show the practical efficiency
provided by a deployment of the system in the recruitment
process of an IT-product company.

In future, as our data sets grow in size, we want to use
more sophisticated unsupervised and supervised machine
learning techniques. Given that supervised learning is hun-
gry for graded data, we see programming classes in univer-

10In this case, we compare the performance of our results
against the performance of test-cases and not the gold stan-
dard of expert-grades.

sities and MOOCs as an avenue to get teaching-assistants’
grades effortlessly. Integration of this system into classrooms
can facilitate a seamless continuous collection of data to
build a powerful automated grading system. The holy grail
shall remain to build problem independent grading tech-
niques or those that reduce the need of graded data, which
may be facilitated by efficient one-class modeling techniques.
An interesting area to explore, preliminarily investigated in
this paper, is the qualitative feedback from our techniques
through feature analysis. Finally, we look forward to the
large scale deployment of our system in the industry and
academia to facilitate further learnings and improvements.

Acknowledgment
The authors would like to thank Vinay Shashidhar for his
help in this work and for his invaluable suggestions.

7. REFERENCES
[1] V. Aggarwal, S. Srikant, V. Shashidhar. Principles for using

Machine Learning in the Assessment of Open Response Items :
Programming Assessment as a Case Study. 2013, NIPS
Workshop on Data Driven Education

[2] S. Srikant, V. Aggarwal. Automatic Grading of Computer
Programs: A Machine Learning Approach. 12th International
Conference on Machine Learning Applications (ICMLA), 2013.

[3] C. Douce, D. Livingstone, and J. Orwell. Automatic test-based
assessment of programming: A review. J. Educ. Resour.
Comput., 5(3), Sept. 2005.

[4] M. Wick, D. Stevenson, P. Wagner. Using testing and JUnit
across the curriculum. ACM SIDCSE Bulletin 37(1) (2005)
236-240

[5] Urs. Von Matt. Kassandra: the automatic grading system.
SIGGUE 22(1994) 26-40

[6] M.Joy, N. Griffiths, R. Boyatt. The BOSS online submission
and assessment system. Journal on Educational Resources in
Computing 5(3) (2005)

[7] K. Ala-Mukta, T. Uimonen, H.M. Jarvinen. Supporting
students in C++ programming courses with automatic
program style assessment. Journal of Information Technology
Education 3 (2004) 245-262

[8] M. Vujosevic-Janicic, M. Nikolic, Dusan Tosic, and V. Kuncak.
Software verification and graph similarity for automated
evaluation of students assignments. Information and Software
Technology, 2012

[9] T. Wang, X. Su, Y. Wang et al. Semantic similarity-based
grading of student programs. Information and Software
Technology, 49(2), 99-107

[10] R. Singh, S. Gulwani, and A. Solar-Lezama. Automated
feedback generation for introductory programming
assignments. Programming Language Design and
Implementation (PLDI) 2013.

[11] J. Sitthiworachart, and M. Joy. Web-based Peer Assessment in
Learning Computer Programming. The 3rd IEEE International
Conference on Advanced Learning Technologies: ICALT03,
Athens, Greece, 9-11 July 2003

[12] PC-Lint Software, Gimpel Software, www.gimpel.com

[13] Automata sample report,
http://www.aspiringminds.in/docs/sample_report.pdf

[14] Pedregosa et al. Scikit-learn: Machine Learning in Python.
JMLR ’12, pp. 2825-2830, 2011.

[15] C.C. Chang and C.J. Lin. LIBSVM: A Library for Support
Vector Machines. 2001, Available:
http://www.csie.ntu.edu.tw/~cjlin/libsvm

[16] A. Hotho, S. Staab and G. Stumme. Ontologies improve text
document clustering. In Data Mining, 2003. Third IEEE
International Conference on, ICDM 2003.

[17] M. Breunig, H. Kriegel, R. Ng, and J. Sander. LOF:
Identifying density-based local outliers. ACM SIGMOD
Record, vol. 29, no. 2, pp. 93-104, 2000

[18] N. Meinshausen, P. Buhlmann. Stability selection. Journal of
the Royal Statistical Society, 72(2010)

[19] C. Leacock and M. Chodorow. C-rater: Automated Scoring of
Short-Answer Questions. Computers and the Humanities,
37(4):389-405, 2003.

1896

http://www.aspiringminds.in/docs/sample_report.pdf
http://www.csie.ntu.edu.tw/~cjlin/libsvm

