
Question Independent Grading using Machine Learning:
The Case of Computer Program Grading

Gursimran Singh, Shashank Srikant, Varun Aggarwal
Aspiring Minds

{gursimran.singh, shashank.srikant, varun}@aspiringminds.com

ABSTRACT
Learning supervised models to grade open-ended responses
is an expensive process. A model has to be trained for every
prompt/question separately, which in turn requires graded
samples. In automatic programming evaluation specifically,
the focus of this work, this issue is amplified. The mod-
els have to be trained not only for every question but also
for every language the question is offered in. Moreover, the
availability and time taken by experts to create a labeled
set of programs for each question is a major bottleneck in
scaling such a system. We address this issue by present-
ing a method to grade computer programs which requires
no manually assigned labeled samples for grading responses
to a new, unseen question. We extend our previous work
[25] wherein we introduced a grammar of features to learn
question specific models. In this work, we propose a method
to transform those features into a set of features that main-
tain their structural relation with the labels across questions.
Using these features we learn one supervised model, across
questions for a given language, which can then be applied
to an ungraded response to an unseen question. We show
that our method rivals the performance of both, question
specific models and the consensus among human experts
while substantially outperforming extant ways of evaluat-
ing codes. We demonstrate the system's value by deploying
it to grade programs in a high stakes assessment. The learn-
ing from this work is transferable to other grading tasks such
as math question grading and also provides a new variation
to the supervised learning approach.

Keywords
Recruitment; Automatic grading; MOOC; Feature engineer-
ing; Supervised learning; One-class learning; Question inde-
pendent learning

1. INTRODUCTION
The automatic grading of open-ended responses has be-

come the subject of extensive research [9, 27, 10]. Machine

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

KDD ’16, August 13 - 17, 2016, San Francisco, CA, USA
© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4232-2/16/08. . . $15.00

DOI: http://dx.doi.org/10.1145/2939672.2939696

learning and other computer science techniques are used to
evaluate responses in a variety of domains such as essay writ-
ing [11, 24], computer programming [6, 25], spoken English
[8, 22, 21] and open response math questions [16]. A number
of innovations, in both academia and the industry, are fo-
cusing on open-response learning and assessment systems.[4,
2, 5, 1, 3]. MOOCs have a pressing demand for a scalable
method of automatic grading of open-ended responses [18]
and so does the industry.

Such assessments typically contain questions or prompts
regarding a topic (hereafter referred to as question) to which
test-takers must respond with written answers, for example,
essay topics are prompts to test English, whereas program-
ming problems are questions used to test software engineer-
ing skills. For each specific question, responses from dif-
ferent test-takers are used to build models that can predict
the quality of new, unseen responses. For example, an es-
say describing a field trip to New York might include terms
such as ‘Statue of Liberty’, ‘Niagara’, and ‘Times Square’
which would qualify the response to be rated highly; on
the other hand, a good essay describing a visit to California
might include such terms as ‘Silicon Valley’, ‘Napa valley’, or
‘Golden Gate Bridge’. For each question, one has to identify
such discriminating features and build models using labeled
responses, making them specific to the subject matter of the
question. The inherent design of such an approach impedes
scaling these systems to newer content. Each new question
requires a significant number of expert-graded responses to
train models. The availability, cost, and time required by
the subject matter experts (SMEs) govern the rate at which
new questions could be added to the system.

We are interested in the case of automatic programming
grading, where the difficulty is two-fold: first, each question
needs to have its own predictive model; second, within each
question, each specific programming language needs to have
separate predictive models. With a programming evaluation
platform supporting 5−10 modern programming languages,
scaling to new questions becomes very expensive. Addition-
ally, there are constraints such as the investment of time and
resources to train SMEs on the rubrics that they must fol-
low in grading responses; the need to have at least two SMEs
evaluating each response to ensure consistency in grading;
and the scarcity of qualified SMEs.1

In this work, we address the problem of scalability in au-

1One cannot make use of a crowdsourcing platform like
Amazon Mechanical Turk to source SMEs because evalu-
ating programming assignments are not human-intelligence
tasks.

263

http://dx.doi.org/10.1145/2939672.2939696

tomatic program grading. We present a method to grade
computer programs which requires no human-graded sam-
ples for grading responses to a new, unseen question. For
a given programming language, we transform question spe-
cific features to features that maintain their relation with
the grade/label across questions. We design such a trans-
formation by exploiting properties specific to the domain of
computer programming. We call these transformed features
as expressive structurally invariant features - their structural
relation with the label remains invariant across questions.
Using the structurally invariant features we learn a question
independent supervised model, which can then be applied
to (the automatically transformed features of) an ungraded
response to an unseen question. In doing so, we extend
our previous work where an expressive grammar of features
was proposed and used to train question-specific supervised
models. We also suggest how the learning from this work
can be transferred to other problems of automatic grading.
Specifically, this paper makes the following contributions:

• We present for the first time a machine learning ap-
proach to learn question independent models for grad-
ing computer programs (or for any domain, to our
knowledge) which requires zero human-graded samples
for a new question.

• We propose a new machine learning workflow to grade
open-response problems, which includes automatic cre-
ation of structurally invariant features, normalization,
a joint learning across questions with these features,
and using them to predict labels for responses to an
unseen question.

• Our approach produces a model for which the accu-
racy rivals the consensus among human experts and
we demonstrate its utility in a real world setting to
predict grades in high-stakes assessments.

The paper is organized as follows - §2 describes the ques-
tion independent learning approach and related work. In
§3, we present the details of our experiments and results. §4
discusses the deployment of our system in a high stakes as-
sessment. §5 concludes the paper and discusses future work.

2. A QUESTION-INDEPENDENT LEARN-
ING APPROACH

We describe in this section how question-independent fea-
tures are engineered and used in a machine learning frame-
work. We begin by laying out the notation, followed by a
summary of the grammar of features proposed in [25]. This
provides a context to the discussion in the subsequent sec-
tions.

2.1 Notation
For a given programming language, each programming

question is referred to as a question and a code which at-
tempts this question, as a response. The set of questions
used in this study is denoted by Qall. Each question q ∈ Qall

has a set of responses R(q) ∈ R collected on it, where R is
the set of responses across all questions. For any given re-
sponse x, its feature vector is referred to as f̂x.2 Each feature
in feature vector f̂x belongs to a category in set C = {B,

2All vectors represented by a cap (f̂x) are row vectors

BC, E, EC, ED, EDC} (see §2.2 for details). For a ques-
tion q ∈ Qall having n responses and m unique features, we

define the feature matrix F
(q)
n×m as

F
(q)
n×m =

f̂1...
f̂n

 where f̂x ∈ Nm (1)

where f̂x is the feature vector of a particular response x
to question q.

We define a good set for each question (see §2.3 for details)

q ∈ Qall containing k good responses as R
(q)
g and the feature

matrix of the k good responses G
(q)
k×m, as

G
(q)
k×m =

ĝ1...
ĝk

 where ĝy ∈ Nm (2)

where ĝy is the feature vector of a particular good response
y to question q.

2.2 Feature Grammar
The grammar proposed in [25] generates features that cap-

ture the semantic relationships present in a program. The
counts and relations of three important properties of a pro-
gram are extracted - the tokens used in the program, the
expressions and the data dependencies.
a) Basic (B) : Examples include counts of all keywords,
tokens, operators etc. such as the number of times a ‘+’
operator appears or loop tokens such as ‘for ’ and ‘while’ ap-
pear.
b) Expressions (E): Expressions such as y = x%2 are ab-
stracted to a notation such as v:2::op:%::c:‘2’, which denotes
an expression having two variables, one modulus operator
and the constant ‘2’. The number of occurrences of such
abstract expressions are counted.
c) Expression Dependency (ED): A data dependency
is captured when the variable in one expression is used in
another expression. For example, the expression x < y,
which contains a relational operator (<) and two variables,
is dependent on the expression y++, which contains a post-
increment operator (++) and one variable. This is denoted
using the notation v:1::op:++← v:2::op:relation. The oc-
currences of each dependency matching such abstractions is
counted. This is repeated for each unique pair of dependen-
cies that appears in a response.
d) Control Context (BC, EC, EDC): Separate counts
are maintained for each of the three properties described
above according to the control-context (loops and condi-
tional statements) in which they appear. For example, an
expression whose abstract notation matches v:2::op:%::c:‘2’
is counted separately if it appears within an if statement
as against in a loop like a for or a while as against in an if
statement within a for.

The grammar of features described above is combinatorial
in nature; a 10 − 15 line program on an average generates
2000 features. A detailed discussion of the features is avail-
able in §2.3 of [25].

2.3 Method
The features introduced in [25] predict responses' grades

accurately. However, the system requires to build a model

264

(a) Question dependent model training

(b) Question independent model training

Figure 1: Question independent model learning

Fig (a) shows how question specific models were learnt in [25]. Each question required a set of grades (y
(q)
TR) corresponding to the

feature matrix (F
(q)
TR) to train the models. A model was trained for every question separately. These models predicted grades of unseen

responses for their respective questions. Fig (b) shows a modified workflow where only one model is learnt in the training phase. While

training, each question's feature matrix first goes through a transformation Ψ before being augmented with the transformed matrices

from other questions. This augmented input is used to learn the augmented grades of all responses used in the training phase.

for each question separately using labeled responses (see Fig
1a). Since getting responses labeled is a cost intensive pro-
cess, we explore the design of a single model that predicts
a response's label irrespective of the question it solves. De-
signing such a model does not fit seamlessly into traditional
machine learning approaches since the features which dis-
criminate ‘good’ responses from ‘bad’ ones change drasti-
cally across questions. For instance, we expect a nested
loop in a ‘good’ response for bubble sort while one loop and
other discriminating expressions is expected in a ‘good’ re-
sponse to reverse a string. We wish to design features which

structurally maintain the same relation with the grades irre-
spective of the question. One such relationship is an increase
in the value of a feature, irrespective of the question, signal-
ing a better grade.3 We could then learn one model across
responses from multiple questions in this invariant feature
space and use it to predict grades of responses to unseen
questions.

3A monotonic relation between a feature and a label is used
for a simple illustration; other relations, like a quadratic
form, are also acceptable in principle as long as they main-
tain this form across questions.

265

Mathematically expressed, we would want to design a
transformation Ψ which would transform a question specific

feature matrix F
(q)
n×m, for a given question q, into a structure

invariant feature matrix D(q). Although the transformation
Ψ takes in question specific parameters, it must be automatic
and not require any manually assigned labeled data for a re-
sponse to an unseen question. The new invariant feature
matrix D(q) can then be augmented across questions and
be used as one consolidated input to learn a question inde-
pendent model QuesInd (see Fig 1b). The new question
independent model can then be used to predict the grades
of a new question without any human-graded samples.

We describe how we design the transformation Ψ which
transforms the question specific features into a set of suffi-
ciently expressive structurally invariant features.

a) Automatic identification of a good set: The good
set, which we define as a subset of the responses that solve a
question correctly, is vital in transforming question specific
features into structurally invariant features (input to Ψ in
Fig 1b). Although constructed for every question separately,
creating this set does not require manually assigned labeled
responses for a question. We posit that a carefully designed
test-suite for a question automatically identifies function-
ally correct responses, which in turn can comprise the good
set. This is not to say that responses failing a test suite
cannot be good - in our approach, it is sufficient to have
a subset of such good responses (corresponding to labels 4
or 5 of the rubric [25]).4 We require a sufficient number of
such responses so that they capture the variation in possible
correct approaches to a question. We exploit the ability to
automatically identify such a good set for a question to de-
velop structurally invariant features. We now describe how
we develop structurally invariant features from such an au-
tomatically identified good set.

b) Distance from a good response: For the sake of
simplicity, let us assume the existence of only one possible
good response to a question. In such a case, an L1 dis-
tance (in the space of m features) between a given response
and the good response will be a structurally invariant fea-
ture. A response at a larger distance from the good response
will have a larger proportion of different ‘keywords’, ‘con-
trol structures’, ‘data dependencies’ etc. as compared to a
response with a lower distance. Thus, responses with higher
distances should probably have lower grades as compared to
ones with lower distances, irrespective of the question the
response and the good set belongs to. Such an L1 distance
from an automatically identified good response is hypothe-
sized to relate to the grade in a structurally invariant way
across questions.

We modify the L1 distance to a one-sided distance ζ, de-
fined as

4There could be cases where a response attempt to trick the
system by hard-coding the exact test cases being evaluated.
In both, our system and the system proposed in [25], this
was handled by keeping a good number of test cases in the
test-suite hidden from the respondent, making it hard to
guess which specific cases a response would be evaluated on.

ζ(f̂x, ĝy) =

m∑
i=1

β(gyi − fxi)

β(a) =

{
a a ≥ 0

0 otherwise

(3)

where f̂x is the feature vector of the response x and ĝy
feature vector of a good response y.

We do this guided by the intuition that programming con-
structs like keywords, control structures etc. not present in
the feature vector (f̂x) of response x but present in the fea-
ture vector (ĝy) of good response y signals a deviation from
how response x ought to be written. On the other hand,
any excess of such features present in response x might still
signal the approach used in good response y5.

This still leaves us with two problems. First, there are
usually not one but multiple ways to correctly implement
a question. The distance ζ defined above can signal near-
ness to a specific good response. We would want a metric
which could signal nearness to one among many such good
responses. Second, the process of calculating ζ transforms
the m dimensional feature space, consisting many interest-
ing and useful features, to just one monolithic distance. We
would want to continue having expressive features to learn
models which generalize well. We address these problems
below.

Algorithm 1 Distance from a good set

INPUT:
f̂x: Feature vector of a response x
G(q): Good set feature matrix of question q
N : N=1 to normalize distances

OUTPUT:
Distance of a response x from the good set of a question q

1: Initialize:
d̂x all ← null . Dists to all good responses

2: function goodSetDist(f̂x, G(q), N)
3: for y ← 1 to k do . Loop over all good responses
4: dxy ← ζ(f̂x, ĝy) . See Eq (3)
5: if N==1 then
6: (dxy)← Ω(dxy, ĝy) . See Eq (4)

7: d̂x all ← d̂x all ∪ (dxy)

8: dx = meanMin25(x all) . Mean of min 25
9: return dx . Distance from good set

c) Distance from a good set: A question typically con-
tains multiple good responses in its good set. A given re-
sponse has a distance ζ from each of these good responses,
which we aim to aggregate meaningfully. Such an aggregate
could be calculated in many ways, the mean and the min-
imum of the distances from the good set 's responses being
two examples. It was shown in [25] that the mean of the 25%
minimum distances correlated moderately with the output
and outperformed the mean and the minimum. It discussed

5We also conducted experiments, not reported for brevity,
whose results validate the intuition empirically.

266

that the mean would dilute the distance metric from match-
ing the closest correct response and the minimum would be
too sensitive to outlier responses in the good set. We use this
mean of the 25% minimum distances across good responses
as the aggregate measure. Algorithm 1 describes the dis-
tance of a response x belonging to a question q from its good
set G(q).

d) Expressive distance scores: In our discussions thus
far, we obtain a single monolithic distance from Ψ as a fea-
ture, for a response, to signal ‘goodness’. This distance is
aggregated across all features (F(q)) and across the differ-
ent responses in the good set. This is in contrast to the
question specific approach, wherein we had the advantage
of having several varied features to learn a model. We ad-
dress this by aggregating the distance across each of the six
feature categories one at a time (see §2.2 for a description
of the categories). We rewrite the features matrices for the
responses and the good set as -

F(q) =
[
F

(q)
B F

(q)
BC F

(q)
E F

(q)
EC F

(q)
ED F

(q)
EDC

]
G(q) =

[
G

(q)
B G

(q)
BC G

(q)
E G

(q)
EC G

(q)
ED G

(q)
EDC

]
We then calculate Ψ with each of the six input pairs (F

(q)
B ,

G
(q)
B), (F

(q)
BC , G

(q)
BC) and so on, resulting in six distance

scores for a response. This results in one distance feature
corresponding to only Basic features like counts and tokens,
one corresponding to Expression features etc. We hypoth-
esize these categories to have different relations (weights)
with the grade despite each of them being structurally in-
variant across questions. For instance, the Basic feature
may relate more to gross differences in the responses and
thus help signaling large jumps across rubric levels while
the distance in the Expression Dependency may help quan-
tify fine differences between responses, differentiating at the
upper end of the rubric.

e) Transformation, Ψ: The distance score calculated
for any response x of question q from the good set of q is the
transformed feature value which is used to learn question
independent models. For a question with n responses, the

transformation Ψ converts the feature matrix F
(q)
n×m into a

vector of distances D
(q)
n×1 =

[
d1 . . . dn

]T
where each di is the

distance of response x from the good set G(q).

f) Normalization, Ω: We describe how a distance score
is calculated for a response by aggregating its distance from
all responses in a good set of a question. Although the aggre-
gation ensures that the general relationship between the dis-
tances and grades is maintained across questions, the scale of
the distances could vary with questions. Specifically, Equa-
tion (3) scales up by the number of features which varies
across questions. For instance, the set of unique features
in responses implementing bubble sort (∼11 lines of code,
O(N2)) would be much more than to swap two numbers
(∼4 lines of code, O(1)). As a consequence, the magnitude
of distance for a ‘nearer’ response may turn out to be much
larger for bubble sort when compared to swapping two num-
bers. This creates an issue when we augment these differ-
ently scaled distances for a joint learning task. A simple way
to circumvent this is to normalize the aggregate distance by

the total number of features in the good response y that it
is compared to. We such define a normalization Ω as

Ω(dxy, ĝy) =
dxy
µy

(4)

where dxy is the distance of response x from good response
y and µy =

∑m
i=1 gyi is the sum of features in the good

response y.
Another normalization strategy could be to normalize by

the average distance among responses in the good set. One
may see this as using distributional properties of an unla-
beled sample. We see in the results section §3.3 that some of
these normalizations are useful. In summary, by automat-
ically identifying good responses, we are able to create six
structurally invariant features, with a hypothesis that they
relate differently and could add incremental value over each
other to predict the grade.6

2.4 Related Work
Recent work in automated programming grading has fo-

cused more on providing feedback than a grade. [23] and [20]
propose a program synthesis approach and a static analysis
approach respectively to provide feedback for erring pro-
grams. These approaches find if small modifications could
be made to the program to enable it to pass their respec-
tive test cases. They provide a list of such modifications
as feedback to students. The systems seemingly perform as
expected only on very small and non-complex pieces of code
(less than 10−15 lines implementing simple algorithms) and
work only for responses with small deviations from a spec-
ified good response. Moreover, they do not focus on evalu-
ation against multiple correct responses. [14] and [15] each
propose a system which uses unsupervised learning to clus-
ter together semantically similar codes. An SME provides a
grade to any one representative code from each cluster. This
grade is then propagated to the rest of the responses in that
cluster. These systems have not been designed to automati-
cally grade responses at scale in real time and instead focus
on reducing the workload of an SME who is involved in the
feedback generation process. This is very different from the
business requirements of high-stakes automatic grading of
computer programs. In comparison to these systems, ours
is the first approach to automatically generate a grade for
a program written for a given question without having any
manually assigned labeled samples for it. Also, we use su-
pervised learning techniques and derive features from a more
expressive feature grammar.

Among machine learning techniques, the literature of do-
main adaptation [13], which constitutes a sub problem in the
field of transfer learning [7, 26], addresses a similar problem
as ours. In domain adaptation, a well established model
built on data drawn from a source distribution is used to
learn a model on data drawn from a target distribution. The
task to be accomplished (e.g. tagging natural language) re-
mains the same across the domains while some distributional
properties of the features change. In our problem, unlike in
domain adaptation, the learning task changes significantly7

6In principle, we could treat every original feature sepa-
rately, convert them into a distance, align them across ques-
tions and use them to learn a question independent model.
This has issues of high sparsity and learning complications
because many features are unique to a question.
7Even though the task sounds the same, i.e. to grade pro-

267

from one question to another. The feature space and the
discriminating features drastically change across questions.
From the standpoint of domain adaptation, it is hard to say
what is the commonality between the source and the target
models for different programming questions - there doesn't
seem to be any connection between the features or the struc-
ture of the models for, say, a bubble sort and a tree traversal.
However, if one is able to define structurally invariant fea-
tures as we do, some learnings from the domain adaptation
literature may be useful.

3. EXPERIMENTS
We designed our experiments to address the following

questions

• Is the QuesIndep model a good predictor of program-
ming performance when compared to human experts?
Does it perform well enough to be used in high stakes
computer programming assessments?

• How well does the QuesIndep perform against QuesSpec
models and the test case metric? The test case metric
provides a baseline while the QuesSpec models, with
their large feature sets, provide an upper bound on the
accuracy of predictions.

• Do normalizing the structurally invariant features help
build better models?

To answer these, we analyzed 19 programming questions8

graded by experts trained on our rubric. The responses
to these questions were, on an average, 30 − 35 lines long
and required a variety of data-flow dependencies and con-
trol structures to be implemented. We experimented with
both, linear and non-linear machine learning techniques. For
each question, we learned a specific model and compared its
performance on a question-independent model learned on a
subset of the questions in the data set. We analyze the per-
formance of the models aggregated over all the questions as
well as separately for each question. We now discuss the
details of the experiments.

3.1 Data
The experiments were run on a set of programming ques-

tions hosted on Automata, our automated programming eval-
uation platform [25]. Respondents, who were college seniors
majoring in computer science, took a 90 minute assessment
in a proctored environment wherein they attempted two pro-
gramming questions in a language of their choice. For these
questions, the respondents had a choice of C, C++ and Java.
A total of 19 questions were used in the study (see Table
1), on which we had an average of 285 responses per ques-
tion and 5434 responses in all. The topics covered by these
questions spanned iterative/ recursive algorithms, trees and
graphs and other algorithms like the shortest job first etc.9

grams, it actually is different. For instance, the task is to
determine whether a response implements bubble sort as
against finding whether a number is prime.
8Models were built separately on data collected in three lan-
guages - C, C++ and Java. Wherever question independent
models are mentioned, we refer to the average performance
of the models across the three languages.
9Due to a paucity of space, we do not list here the details
of the question statements.

Table 1: Details of our dataset

Question Name #Codes #Good Set #Features
Qused tr
isSameReflection 126 69 2874
waitingTimeSJF 307 31 4513
countCacheMiss 455 93 3682
isTree 420 71 2741
patternPrint 603 211 2945
grayCheck 610 134 1793
transposeMultMatrix 507 183 2728
eliminateVowelString 515 156 2424
Total 3543 948
Qunseen tr
cellCompete 215 70 2801
insertSortedList 101 22 1154
isSubTree 104 39 1315
minTreePath 189 76 1255
isPath 71 27 4766
lruCountMiss 244 66 4416
generalizedGCD 248 72 3163
distinctElementCount 256 91 1656
rotatePictureMethod 209 83 2085
reverseLinkedList 41 19 1162
balancedParentheses 213 96 1649
Total 1891 661
The number of overall responses and the responses in the good

set for each question is listed. Questions are divided into two

sets - Qused tr and Qunseen tr based on how they are used in

training the models (see §3.2.1)

Three professional software engineers with 3-5 years' expe-
rience each, who were also seasoned competitive program-
mers, shared the task of grading the responses. Each re-
sponse was graded by two experts. The experts followed the
rubric defined in [25] to grade codes on a scale of 1-5. Before
beginning the grading exercise, they underwent a one-week
workshop wherein they learned how to interpret the rubric
and participated in mock grading exercises. The correlation
between the grades of any two experts on an average was
0.81 across the questions in the data set.

We note here that grades are required only once for re-
sponses to only a subset of these questions. A model built
on such responses then predicts grades of responses to any
number of unseen questions without manually assigned la-
beled responses.

3.2 Models
We developed machine learning models on the responses

collected on the questions listed in Table 1. We used linear
regression, linear regression with L1 regularization (LASSO),
linear regression with L2 regularization (Ridge regression),
decision trees, random forests and SVMs. For LASSO[17]
(α = 1) we varied λ from 0 to 4. For ridge regression, we
varied λ from 0 to 100. For random forests[19], we varied
the number of estimators from 15 to 100. For SVMs[19, 12],
we tested three kernels - linear, polynomial and RBF. We
varied the penalty factor C from 0.125 to 128, and parame-
ters γ from 0.125 to 128 and ε from 0.5 to 16. In all these
techniques, the model which gave the best cross-validation
correlation was selected. For the question specific models,
a feature selection step was followed by a 3-fold cross val-

268

Table 2: Results of LASSO on the test set - Mean values across questions

Metric Question Set #Questions QuesSpec-All QuesSpec QuesIndep-N1 QuesIndep-N0 Baseline-TC
Correl Qall 19 0.84 0.81 0.80 0.76 0.65
Bias Qall 19 0.14 0.15 0.24 0.28 0.35
MAE Qall 19 0.41 0.46 0.58 0.66 0.85
Correl Qunseen tr 11 0.85 0.81 0.80 0.76 0.65
Bias Qunseen tr 11 0.14 0.20 0.27 0.34 0.31
MAE Qunseen tr 11 0.43 0.46 0.62 0.70 0.84

idation. The best cross-validation correlation was used for
selecting the final model. Similar to what was seen in [25],
linear models worked the best among all these techniques,
indicating linearity in the inherent structure of this problem
space. We report results only for LASSO in this work which
outperformed all other techniques. We trained the following
models to answer the questions enumerated at the beginning
of the section:

• QuesSpec-All: We train separate models for each
question as described in [25]. The full set of features
(with feature selection) were used as inputs. This pro-
vides the upper bound on accuracy for our techniques.

• QuesSpec: Separate models were trained for every
question using the six expressive distance scores (see
§2.3d) as features. This provides an upper bound on
what best we could do with the six categorized fea-
tures. Our question independent model cannot do
better than this (other than in cases where models
overtrain). If this model does not perform well, then
the technique we introduce in this work cannot be ex-
pected to do well either. On the other hand, it is use-
ful to find how the question independent model does
in comparison with these.

• QuesIndep: Our question independent model was
trained across a subset of questions (discussed in §3.2.1)
using six of the expressive distance scores as features.
We train separate models in this category with and
without applying the normalization (Ω), discussed in
§2.3f. We denote these models by the names QuesIndep-
N1 when normalization is applied and QuesIndep-
N0 when it is not.

• Baseline-TC: The baseline for all our experiments
is a model trained on just the test-case scores across
questions. This mimics a real world scenario where we
could have predicted the ‘goodness’ of a response by its
performance on its test-suite. Given that the perfor-
mance on a test-suite is a metric whose meaning does
not change across questions, it too is a structurally in-
variant feature whose values can be used across ques-
tions to learn a model.

In all the above models, the percentage of test-cases passed
was added as a feature.

3.2.1 Train-Test Split
To learn the QuesSpecAll model, we split the responses

to each question into a 67−33 train-test set. The selection of
the train-test set was nuanced for the QuestIndep models.
In addition to testing the model on responses belonging to
questions already present in the train set, we ensured that

there were responses in the test set from unseen questions
- those whose responses were not used to train the models
at all. The performance on such an unseen set would then
demonstrate how well the QuesIndep models generalized
to questions where we did not have any human-graded sam-
ples, the use case expected in a real-world scenario. We also
ensured that the responses in the good set for each ques-
tion were not a part of their respective test-sets. We de-
note those questions whose responses are used to train the
question independent models as Qused tr. Questions whose
responses are not used in training the models are denoted
as Qunseen tr. Qall denotes the set of all the questions. In
our data-set, we randomly selected 8 questions as part of
Qused tr and the remaining 11 as Qunseen tr. We trained the
QuesIndep models on 67% of the responses belonging to
Qused tr (2384 in total) and tested them on the remaining
33% responses of Qused tr and additionally on all responses
of the Qunseen tr questions (3050 in total).

3.2.2 Evaluation Metric
We use the Pearson correlation coefficient (r) to quan-

tify and measure the similarity between the predicted grades
and the experts' grades. While describing the QuesIndep
model building process (see §2.3), we suggested how the dis-
tances calculated from the good set could have been on dif-
ferent scales for different questions. For some questions, this
could cause the question independent model to scale and/or
displace the distribution of grades linearly as compared to
their true distribution. As a consequence, the model may
still correlate highly with the grade. We hence consider

the bias10 (
∑ ypred−y

n
) and MAE (

∑ |ypred−y|
n

) as evalua-
tion metrics in addition to the correlation coefficient.

3.3 Discussion
We contrast the performance of the QuesIndep and QuesSpec

models on the test set (Table 2). To maintain brevity, we
tabulate the mean of the models' performance on each ques-
tion. We compare the performance of the models on two
sets of questions - Qall and Qunseen tr (see §3.2.1). The
baseline results for the Qunseen tr are calculated by learning
a model on the test case scores of only the Qused tr set and
testing on the Qunseen tr set. The QuesSpec results on the
Qunseen tr set correspond to the models learned on each of
the Qunseen tr questions.

We first discuss the aggregate results across questions. We
find that the question independent model with normaliza-
tion (QuesIndep-N1) has an r of 0.80 with expert grades
on both sets of questions - Qall and Qunseen tr with a bias
of 0.24 and 0.27 on the two sets respectively. This rivals the

10The bias in this work does not refer to the bias of learning
models. It refers to the observational error.

269

Table 3: Results of LASSO on the test set - Question-wise results

QuesIndep-N1 Baseline-TC
Question Name Correl Bias MAE Correl Bias MAE

Qused tr

(N = 1159)

isSameReflection 0.54 0.63 0.73 0.46 0.95 1.10
waitingTimeSJF 0.80 0.12 0.52 0.65 0.46 0.88
countCacheMiss 0.82 0.01 0.53 0.52 0.39 1.01
isTree 0.83 0.23 0.54 0.72 0.20 0.74
patternPrint 0.88 0.14 0.42 0.80 0.32 0.64
grayCheck 0.84 0.25 0.60 0.72 0.01 0.77
transposeMultMatrix 0.87 0.00 0.37 0.79 0.68 0.81
eliminateVowelString 0.79 0.15 0.58 0.55 0.16 0.89

Qunseen tr

(N = 1891)

cellCompete 0.73 0.06 0.54 0.60 0.06 0.69
insertSortedList 0.76 0.33 0.70 0.46 0.55 1.21
isSubTree 0.75 0.21 0.76 0.60 0.24 1.03
minTreePath 0.79 0.13 0.61 0.76 0.19 0.68
isPath 0.86 0.39 0.57 0.73 0.09 0.61
lruCountMiss 0.84 0.23 0.51 0.58 0.39 0.87
generalizedGCD 0.72 0.48 0.90 0.51 0.68 1.20
distinctElementCount 0.89 0.19 0.43 0.86 0.12 0.46
rotatePictureMethod 0.91 0.28 0.40 0.77 0.12 0.74
reverseLinkedList 0.87 0.23 0.54 0.80 0.62 0.77
balancedParentheses 0.63 0.49 0.83 0.45 0.37 1.00

Baseline−TC

Q
ue

sI
nd

ep

o

o
o

o

o

o

o

o o
o o

o
oo

o

oo

o

o

0.4 0.5 0.6 0.7 0.8 0.9

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

● N0
 N1

(a) Correlation

Baseline−TC

Q
ue

sI
nd

ep

o

o
o

o

o

o
o

o

o

o

o

o

o

o

o
o

o

o

o

0 0.1 0.3 0.5 0.7 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

● N0
 N1

(b) Bias

Baseline−TC

Q
ue

sI
nd

ep o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

0.35 0.55 0.75 0.95 1.15

0.35

0.45

0.55

0.65

0.75

0.85

0.95

1.05

1.15
● N0

 N1

(c) Mean Absolute Error

Figure 2: Performance of QuesIndep models contrasted against Baseline-TC

agreement of two human experts (r = 0.81, bias = 0.14) and
shows that the model may be used in a real world setting.
The Qall and Qunseen tr sets follow the same trends and we
discuss them together. In comparison to the testcase base-
line, the question independent model does much better on
each of the metrics - r, bias and MAE. When compared to
the question specific models (QuesSpec-All, QuesSpec),
the question independent model provides comparable per-
formance in their r. However, it shows a higher bias and
MAE. This shows that some scaling issues do creep in while
building question independent models and this aspect may
further be improved. However, the difference in MAE for
question independent and question specific models is not
very large and varies between 0.12 and 0.25 points. We find
that normalization helps both in terms of r (0.04) and bias
(0.04− 0.07). These observations are as expected.

In summary, we find that the question independent mod-
els rival expert grades, largely outperform test case mea-

sures, and show higher bias as compared to question specific
models. Furthermore, normalizing the structurally invariant
features does help build better models.

We now discuss the errors on individual questions. We
compare the three error metrics on our best question inde-
pendent model QuesIndep-N1 with those on the baseline
(Table 3). We find that the r and MAE of the question
independent model outperform that of the TC baseline by
0.15 points on an average. This is also distinctly visible
in Fig 2a and Fig 2c (X-axis represents the error metric of
Baseline-TC and the Y-axis represents the error metric of
the models, QuesIndep-N0 and QuesIndep-N1). We see
in Fig 2c that the performance on MAE by QuesIndep-
N0 on 3 questions does worse than the baseline. However,
the performance on these 3 questions improves on using the
model with normalization, reinforcing the utility of normal-
ization in the learning process.

When we compare biases, we see that the question inde-

270

pendent model performs better than the test case baseline
on 13 of the 19 questions (Fig 2b and Table 3). Out of
the 6 questions that underperform: 2 are from the Qseen tr

set and 4 from the Qunseen tr set (biases marked in bold-
face). A reason for this under performance could be the
normalization technique not being able to get the distances
for these questions on the same scale perfectly well. The
simple linear scaling demonstrated through our techniques
may be replaced by more sophisticated non-linear scaling,
warranting a more detailed study.

To conclude, the question independent model consistently
outperforms the baseline on correlation, which is expected.
As a result of possible normalization issues, the model un-
derperforms in bias in a few cases. However, in no case is
the MAE affected and we see it consistently outperform the
baseline, demonstrating the utility of the learning technique
we introduce in this work.

4. DEPLOYMENT
We deployed the QuesIndep-N1 model on Automata,

our online programming evaluation platform. A leading soft-
ware product company having more than 10, 000 employees
wanted to use this product for their 2015-2016 hiring cy-
cle of software engineers with 0-2 years' experience. The
company wanted to deliver 13 questions developed by them
on this platform. Having released the 13 questions in June
2015, we had 68 responses on an average in the good set
across the questions within 3 weeks. By the first week of
July, we had the question independent models live and eval-
uating responses to the questions. This is in stark contrast
to the 4 − 5 month process it would typically take to de-
velop question specific models per question. Till Decem-
ber 2015, a total of 3176 candidates had been evaluated on
this platform. The company's default shortlisting criterion
was to consider candidates passing at least 75% of their test
cases, which was followed by an interview where the final
hiring decision was made. In this hiring cycle, they short-
listed 468 candidates who had scored 4 or 5 as predicted by
the QuesIndep-N1 model. Had the hiring been done only
based on the test-case cut-off, 391 candidates would have
made it through. 384 candidates were common to these two
sets. Among the 84 candidates (468 − 384) interviewed by
the virtue of QuesIndep-N1, the interviewers found the
grades of 76 respondents match their evaluation. Hence,
16.5% candidates (76

76+384
), a sizeable proportion, would not

have made it through to the interviews had the criterion
been only the test case score. On the other hand, of the
7 candidates who were graded low but had a high testcase
score, all were graded 3 by the model, had an average test-
case score of 76.3% and seemed to be at the cusp of being
graded 3 or 4 on visual inspection by the interviewers. At
the end of the process, 136 of the shortlisted 468 candidates
were offered a job. 46 of these 136 (33%) were signaled by
QuesIndep-N1. This case study demonstrates the success-
ful deployment of QuesIndep-N1 models in a high-stakes
assessment, helping save man-hours which would have other-
wise gone into designing question specific models. In a sepa-
rate study done on candidates who have completed 6 months
in job, we also found the predictions of QuesIndep-N1 to
correlate significantly (r = 0.8) with the manager ratings on
job performance.

5. CONCLUSION AND FUTURE WORK
We present in this work a system to grade computer pro-

grams using question-independent supervised machine learn-
ing models. Building on the grammar of features we intro-
duce in our previous work [25], we engineer semantically
invariant features which maintain their structural relation
with the labels across questions. This is possible because
we identify a set of ‘good’ responses to a question automati-
cally. We show that a single model learned on such features,
derived from the responses to a few questions, is able to
predict the grades of responses to questions not seen in the
model’s training. Further, we show that the performance
of such a model clearly outperforms extant evaluation tech-
niques, rivals the performance of question-specific models
and the consensus of human experts. In doing so, we suc-
cessfully demonstrate how to grade responses to questions
without any manually assigned labeled samples. Through a
case study, we show how practically efficient the system is
when deployed to recruit software engineers, saving signifi-
cant time and resources in the process.
We see a window for further research in the normalization
techniques we lay out and the transformations to create a
larger set of structurally invariant features. The relation-
ship of accuracy with the number of train problems, size of
data set and the number of good codes for new problems
can be studied further. Other learning techniques which
model rankings better, like ordinal regression, can also be
explored. The automatic identification of functionally cor-
rect responses, which we demonstrate in this work, can be
extended to other areas as well like open response math-
ematical questions and electronic circuit solving, where a
numeric comparator judges the final answer of a series of
equations. It also applies to evaluations whose outcomes are
human intelligence tasks (such as evaluating whether a web-
page is aesthetically designed); the identification of correct
responses then can be crowd-sourced in real time to produce
a high quality good set. These observations promise inter-
esting opportunities for research in such areas, all of which
will help the holy grail of designing fully automated teaching
assistants. We look forward to the learning from this work
resulting in similar accurate, scalable grading systems being
designed in other domains.

6. REFERENCES
[1] Automata. Aspiring Minds

http://www.aspiringminds.com/technology/automata.

[2] E-rater. ETS
http://www.ets.org/research/topics/as nlp/writing quality/.

[3] Intelli metric. Vantage Learning
http://www.vantagelearning.com/products/intellimetric/.

[4] Speechrater. ETS
https://www.ets.org/research/topics/as nlp/speech/.

[5] Svar. Aspiring Minds
http://www.aspiringminds.com/technology/svar.

[6] V. Aggarwal, S. Srikant, and V. Shashidhar. Principles
for using machine learning in the assessment of open
response items: Programming assessment as a case
study. In NIPS Workshop on Data Driven Education,
2013.

[7] J. Baxter. A bayesian/information theoretic model of
learning to learn via multiple task sampling. Machine
Learning, 28(1):7–39, 1997.

271

[8] J. Bernstein, A. Van Moere, and J. Cheng. Validating
automated speaking tests. Language Testing, 2010.

[9] M. Birenbaum and K. K. Tatsuoka. Open-ended

versus multiple-choice response formatsâĂŤit does
make a difference for diagnostic purposes. Applied
Psychological Measurement, 11(4):385–395, 1987.

[10] H. M. Breland. The direct assessment of writing skill:
A measurement review. ETS Research Report Series,
1983(2):i–23, 1983.

[11] J. Burstein, L. Braden-Harder, M. Chodorow, S. Hua,
B. Kaplan, K. Kukich, C. Lu, J. Nolan, D. Rock, and
S. Wolff. Computer analysis of essay content for
automated score prediction: A prototype automated
scoring system for gmat analytical writing assessment
essays. ETS Research Report Series, 1998(1):i–67,
1998.

[12] C.-C. Chang and C.-J. Lin. Libsvm: a library for
support vector machines. ACM Transactions on
Intelligent Systems and Technology (TIST), 2(3):27,
2011.

[13] H. Daume III and D. Marcu. Domain adaptation for
statistical classifiers. Journal of Artificial Intelligence
Research, pages 101–126, 2006.

[14] E. L. Glassman, J. Scott, R. Singh, P. J. Guo, and
R. C. Miller. Overcode: Visualizing variation in
student solutions to programming problems at scale.
ACM Transactions on Computer-Human Interaction
(TOCHI), 22(2):7, 2015.

[15] J. Huang, C. Piech, A. Nguyen, and L. Guibas.
Syntactic and functional variability of a million code
submissions in a machine learning mooc. In AIED
2013 Workshops Proceedings Volume, page 25.
Citeseer, 2013.

[16] A. S. Lan, D. Vats, A. E. Waters, and R. G. Baraniuk.
Mathematical language processing: Automatic grading
and feedback for open response mathematical
questions. In Proceedings of the Second (2015) ACM
Conference on Learning@ Scale, pages 167–176. ACM,
2015.

[17] N. Meinshausen and P. Bühlmann. Stability selection.
Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 72(4):417–473, 2010.

[18] L. Pappano. The year of the mooc. The New York
Times (Accessed: 2016-2-2).

[19] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, et al. Scikit-learn: Machine
learning in python. The Journal of Machine Learning
Research, 12:2825–2830, 2011.

[20] K. Rivers and K. R. Koedinger. Automatic generation
of programming feedback: A data-driven approach. In
The First Workshop on AI-supported Education for
Computer Science (AIEDCS 2013), page 50, 2013.

[21] V. Shashidhar, N. Pandey, and V. Aggarwal.
Automatic spontaneous speech grading: A novel
feature derivation technique using the crowd. In
Proceedings of the Conference of the Association for
Computational Linguistics. ACL, 2015.

[22] V. Shashidhar, N. Pandey, and V. Aggarwal. Spoken
english grading: Machine learning with crowd
intelligence. In Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, pages 2089–2097. ACM, 2015.

[23] R. Singh, S. Gulwani, and A. Solar-Lezama.
Automated feedback generation for introductory
programming assignments. In ACM SIGPLAN
Notices, volume 48, pages 15–26. ACM, 2013.

[24] V. Southavilay, K. Yacef, P. Reimann, and R. A.
Calvo. Analysis of collaborative writing processes
using revision maps and probabilistic topic models. In
Proceedings of the Third International Conference on
Learning Analytics and Knowledge, pages 38–47.
ACM, 2013.

[25] S. Srikant and V. Aggarwal. A system to grade
computer programming skills using machine learning.
In Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and
data mining, pages 1887–1896. ACM, 2014.

[26] S. Thrun. Is learning the n-th thing any easier than
learning the first? Advances in neural information
processing systems, pages 640–646, 1996.

[27] C. Vleuten, G. Norman, and E. Graaff. Pitfalls in the
pursuit of objectivity: issues of reliability. Medical

education, 25(2):110–118, 1991.

272

	Introduction
	A Question-independent learning approach
	Notation
	Feature Grammar
	Method
	Related Work

	Experiments
	Data
	Models
	Train-Test Split
	Evaluation Metric

	Discussion

	Deployment
	Conclusion and Future Work
	References

