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Driving and suppressing the human 
language network using large language 
models

Greta Tuckute    1,2 , Aalok Sathe    1,2, Shashank Srikant3,4, Maya Taliaferro1,2, 

Mingye Wang1,2, Martin Schrimpf    2,5,6, Kendrick Kay7 & 

Evelina Fedorenko    1,2,8 

Transformer models such as GPT generate human-like language and 

are predictive of human brain responses to language. Here, using 

functional-MRI-measured brain responses to 1,000 diverse sentences, we 

first show that a GPT-based encoding model can predict the magnitude of 

the brain response associated with each sentence. We then use the model 

to identify new sentences that are predicted to drive or suppress responses 

in the human language network. We show that these model-selected 

novel sentences indeed strongly drive and suppress the activity of 

human language areas in new individuals. A systematic analysis of the 

model-selected sentences reveals that surprisal and well-formedness of 

linguistic input are key determinants of response strength in the language 

network. These results establish the ability of neural network models to not 

only mimic human language but also non-invasively control neural activity 

in higher-level cortical areas, such as the language network.

Reading and understanding this sentence engages a set of left-lateralized 
frontal and temporal brain regions. These interconnected areas (or the 
‘language network’1–4) support both comprehension and production 
of spoken, written and signed linguistic utterances2,5–7 across diverse 
languages8. These regions are highly selective for language relative 
to diverse non-linguistic inputs (see ref. 9 for a review), are sensitive 
to linguistic structure at many levels2,7,9–11, and are causally important 
for language such that damage to these regions leads to linguistic defi-
cits12,13. However, many aspects of the representations and algorithms 
that support language comprehension remain unknown.

Over the past few years, artificial neural networks for language 
have emerged as in silico models of language processing. These large 
language models (LLMs) can generate coherent text, answer questions, 

translate between languages and perform sophisticated language com-
prehension tasks14,15. Strikingly, although the LLMs were not developed 
with the goal of modelling human language processing, some of these 
models (especially the unidirectional Transformer architectures14) 
have a remarkable capacity to mimic human language behaviour16,17 
and predict brain activity during language processing18–23. But despite 
LLMs being today’s most quantitatively accurate models of language 
processing, there has been no attempt to test whether LLMs can caus-
ally control language responses in the brain. By ‘causal control’, we 
mean using models to make quantitative predictions about a neural 
target (a cell or a brain area/network) and subsequently using those 
predictions to successfully modulate neural activity in the target in a 
closed-loop manner.
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language network (suppress sentences; for example, ‘We were sitting 
on the couch.’ or ‘Inside was a tiny silver sculpture.’). We evaluated 
our encoding model by recording brain responses to these new drive 
and suppress sentences in new participants (denoted as evaluation 
participants) (note the fully independent procedure using both new 
stimuli and new participants; for evidence that the new drive and sup-
press sentences differ from the baseline sentences, see Supplementary 
Information sections 10 and 11).

We collected functional MRI (fMRI) responses to the drive and 
suppress sentences in an event-related, single-trial paradigm with 
three new participants (three sessions each, n = 9 sessions total; see 
‘Encoding model evaluation’ in Methods). The drive and suppress 
sentences were randomly interspersed among the 1,000 baseline 
sentences. Figure 2b shows the average responses for the n = 3 evalu-
ation participants for the drive, suppress and baseline sentence con-
ditions. The drive sentences yielded significantly higher responses 
than the suppress sentences (β = 0.57, t = 15.93, P < 0.001 using linear 
mixed effects (LME) modelling; see ‘Statistical analyses’ in Methods 
and Supplementary Information section 18). The drive sentences also 
yielded significantly higher responses than the baseline sentences 
(β = 0.27, t = 9.72, P < 0.001), with the evoked BOLD signal being 85.7% 
higher for the drive condition than for the baseline (quantified using 
non-normalized BOLD responses; Supplementary Information sec-
tion 12a). Finally, the suppress sentences yielded lower responses 
than the baseline sentences (β = −0.29, t = −10.44, P < 0.001), with the 
evoked BOLD responses being 97.5% lower for the suppress condi-
tion than for the baseline (Supplementary Information section 12a). 
In summary, we trained an encoding model to generate predictions 
about the magnitude of activation in the language network for a new 
set of sentences and then ‘closed the loop’ by collecting brain data 
for these new sentences from new participants to demonstrate that 
these sentences modulate brain responses as predicted. We note that 
although we trained the encoding model using the responses in the 
LH language network as a whole, the five individual LH language func-
tional regions of interest (fROIs) showed highly correlated responses 
across the baseline set (Supplementary Information section 4 and 
‘Language regions exhibit high stimulus-related activity’) and similar 
condition-level responses to the drive, suppress and baseline sentences 
(Supplementary Information section 15f) (see Supplementary Infor-
mation section 15g for evidence that this pattern of responses to drive, 
suppress and baseline sentences is not ubiquitously present across the 
brain). These inter-fROI similarities align well with past work showing 
similar modulation of the different language areas by diverse linguistic 
manipulations7,8,11,26–29.

To further validate the robustness of responses to the drive and 
suppress sentences, we collected brain data for a large subset of the 
drive, suppress and baseline stimuli in a traditional blocked fMRI 
design, where drive, suppress and baseline sentences were blocked 
into groups, with four additional participants (one session each, n = 4 
sessions total; see ‘fMRI experiments’ in Methods). The results mirrored 
those from the event-related experiment: the drive sentences yielded 
the highest response, followed by the baseline sentences (the evoked 
BOLD response was 12.9% higher for drive than for baseline and 56.6% 
lower for suppress than for baseline; Supplementary Information sec-
tion 12b). Hence, independent of experimental design (event-related 
versus blocked) and modelling procedure (single-trial modelling versus 
condition-level modelling), the brain responses to the drive sentences 
were higher than those to the baseline sentences, and the responses to 
the suppress sentences were lower than those to the baseline sentences.

For a final examination of model-guided stimulus selection, we 
explored an alternative approach to selecting drive/suppress sen-
tences: the ‘modify’ approach, where, instead of searching within 
existing text corpora, we used gradient-based modifications to trans-
form a random sentence into a novel sentence predicted to elicit high 
or low fMRI responses (Supplementary Information section 16a) and 

Recent work in visual neuroscience has shown that artificial neural 
network models for image recognition can causally intervene in the 
non-human primate visual system by generating visual stimuli that 
modulate activity in different regions of the ventral visual pathway24,25. 
In this work, we ask whether similar model-based control is feasible 
for the higher-level cognitive domain of language: can we leverage the 
predictive power of LLMs to identify new stimuli to maximally drive or 
suppress brain responses in the language network of new individuals? 
This question taps into two key aspects of the generalization ability 
of LLMs. First, do LLMs capture features of language representations 
that generalize across humans? Second, do LLMs have the capacity to 
predict brain responses to model-selected stimuli that extend beyond 
the distribution of naturally occurring linguistic input? We demon-
strate that model-selected stimuli drive and suppress brain responses 
in the language network of new individuals, establishing the ability 
of brain-aligned LLMs to non-invasively control areas implicated in 
higher-level cognition. We then leverage sentence-level brain responses 
to a broad distribution of linguistic input to ask what kinds of linguis-
tic input the language network is most responsive to. In a large-scale 
behavioural experiment, we collect rating norms for ten sentence 
properties and use these norms to characterize the language network’s 
preferred stimuli.

Results
Model-selected sentences control language network 
responses
Our aim was to test whether current models of the human language 
network are capable of driving and suppressing brain responses in 
these higher-level cognitive brain areas. We developed an encoding 
model of the left hemisphere (LH) language network in the human 
brain with the goal of identifying new sentences that would activate 
the language network to a maximal or minimal extent. The model 
takes as input last-token sentence embeddings from GPT2-XL14 (pre-
viously identified as the most brain-aligned language model20; layer 
22, see Supplementary Information section 6a for the cross-validated 
analysis that led to this choice) and was trained, via ridge regression, 
to predict the average LH language network’s (functionally defined2) 
blood-oxygen-level-dependent (BOLD) response (also referred to as the 
language network response; see ‘Definition of ROIs’ in Methods). The 
BOLD responses were acquired from five train participants who read 
a set of 1,000 diverse, corpus-extracted sentences (baseline set) (two 
sessions each, n = 10 sessions total; see ‘Encoding model development’ 
in Methods) (Fig. 1a). The encoding model achieved a prediction per-
formance of r = 0.38 (the noise ceiling (NC) is r = 0.56; Supplementary 
Information section 5) when evaluated on held-out sentences within 
the baseline set (s.e. over five splits, 0.016; all five P values, <0.001; 
Supplementary Information section 6a). To ensure that the encoding 
model performance did not hinge on specific experimental decisions, 
we confirmed that the model maintained high predictivity performance 
on held-out sentences when changing the procedure for obtaining 
sentence embeddings (the average of all tokens in the sentence; Supple-
mentary Information section 6b) and even using sentence embeddings 
from a different LLM architecture (a bidirectional-attention Trans-
former model, BERT-large; Supplementary Information section 6c). 
Furthermore, the encoding model also achieved relatively high predic-
tive performance on anatomically, rather than functionally, defined 
language regions, although predictivity was lower (Supplementary 
Information section 6d).

To identify sentences that would elicit a desired (high or low) level 
of activation in the language network, we searched across ~1.8 mil-
lion sentences from nine diverse large-scale text corpora (Fig. 1b). We 
identified a set of 250 sentences that were predicted to elicit maximally 
strong activity in the language network (drive sentences; for example, 
‘Turin loves me not, nor will.’ or ‘People on Insta Be Like, “Gross!”’) and 
250 sentences that were predicted to elicit minimal activity in the 
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collected responses to these novel sentences from two participants 
(event-related design, n = 6 sessions total). We found that this explora-
tory modify approach was able to drive responses by 57% relative to 
the baseline but failed to suppress responses, most likely because the 
resulting modify stimuli were often akin to word lists, which the encod-
ing model was not trained on (Supplementary Information section 16b).

The model captures most explainable variance in new 
participants
In the previous section, we examined predictivity at the condition level 
(drive versus suppress versus baseline). Here we sought to evaluate the 
accuracy of the predictions from the encoding model at the level of indi-
vidual sentences. To do so, we turned to the event-related experiment 
(Fig. 2b), which allows us to estimate sentence-level brain responses to 
1,500 sentences for each of the three evaluation participants.

Figure 3 shows the model-predicted versus observed brain 
responses in the language network (n = 3 evaluation participants). 
These participants were not used to train the encoding model and 
hence allowed us to estimate encoding model predictivity performance 

in held-out participants and held-out sentences. Across the full set 
of 1,500 baseline, drive and suppress sentences, we obtained a Pear-
son correlation of 0.43 (d.f. = 1,498, P < 0.001, t = 18.60, s.e. = 0.02) 
between predicted and observed brain responses. Because the drive 
and suppress sentences were designed to elicit high or low brain 
responses, respectively, one might expect that the correlation might 
be unduly driven by these two conditions. We therefore isolated the 
set of n = 1,000 naturalistic, corpus-extracted baseline sentences and 
obtained a correlation of 0.30 (d.f. = 998, P < 0.001, t = 9.88, s.e. = 0.03). 
Hence, the encoding model was able to predict a substantial and sta-
tistically significant amount of variance in brain responses in new par-
ticipants to both naturalistic sentences that fall within the distribution 
of the training (baseline) set and out-of-distribution sentences (drive/
suppress set), for which encoding model predictions (the x axis in  
Fig. 3) extend far beyond the training set distribution.

To better interpret the accuracy of the sentence-level predic-
tions, we quantified the maximum possible prediction performance 
by treating inter-participant variability as ‘noise’ that cannot be pre-
dicted by a computational model. The goal here is to assess how 
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Fig. 1 | Overview of the procedure for encoding model development and 

stimulus selection for evaluation. a, We developed an encoding model (M) 

of the LH language network in the human brain with the goal of identifying 

novel sentences that activate the language network to a maximal or minimal 

extent (see ‘Encoding model development’ in Methods). Five participants 

(train participants) read a large sample (n = 1,000) of six-word corpus-

extracted sentences, the baseline set (sampled to maximize linguistic diversity; 

Supplementary Information section 1), in a rapid, event-related design while 

their brain activity was recorded using fMRI. BOLD responses from voxels in the 

LH language network were averaged within each train participant and averaged 

across participants to yield an average language network response to each of 

the 1,000 baseline set sentences. We trained a ridge regression model from the 

representations of the unidirectional-attention Transformer language model, 

GPT2-XL (identified as the most brain-aligned language base model in Schrimpf 

et al.20), to the 1,000 averaged fMRI responses. Given that GPT2-XL can generate 

a representation for any sentence, the encoding model (M) can predict the LH 

language network response for arbitrary sentences. To select the top-performing 

layer for our encoding model, we evaluated all 49 layers of GPT2-XL and selected 

the layer that had highest predictivity performance on brain responses to held-

out baseline set sentences (layer 22; Supplementary Information section 6a).  

b, To evaluate the encoding model (M), we identified a set of sentences to activate 

the language network to a maximal extent (drive sentences) or a minimal extent 

(suppress sentences) (see ‘Encoding model evaluation’ in Methods). To do so, 

we obtained GPT2-XL embeddings for ~1.8 million sentences from diverse, large 

text corpora, generated predicted language network responses and ranked these 

responses to select the sentences that are predicted to increase or decrease brain 

responses relative to the baseline set. Finally, we collected brain responses to 

these novel sentences in new participants (evaluation participants).
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well our model predicts brain activity at the group level, taking into 
account irreducible variance due to inter-participant variability and 
measurement noise. First, we computed the empirical variability in 
participants’ responses to the 1,500 sentences. Next, we simulated 
response noise for each participant using the empirical variability 
across participants (drawing samples from a Gaussian distribution 
with zero mean and the empirical inter-participant standard devia-
tion). For each sentence, simulated response noise was added to the 
encoding model’s predicted response (the x axis in Fig. 3), and the 
responses were then averaged across participants. This simulation 
provides an estimate of the maximum possible prediction perfor-
mance of the encoding model.

The inset in Fig. 3 shows these simulated brain responses versus 
the predicted responses. In these simulations, the Pearson correlation 
was 0.62 (d.f. = 1,498, P < 0.001, t = 30.85, s.e. = 0.02) across all 1,500 
sentences (observed: r = 0.43—that is, 69.4% of the theoretically obtain-
able correlation) and 0.39 (d.f. = 998, P < 0.001, t = 13.32, s.e. = 0.03) 

across the 1,000 baseline sentences (observed: r = 0.30—that is, 76.9% 
of the theoretically obtainable correlation). These results show that due 
to inter-participant variability in fMRI measurements, even a perfect 
model can achieve only r = 0.62 predictive performance. Although 
our model is not perfect, the performance level suggests that the 
model successfully captures much of the neurally relevant variance 
in responses to individual sentences.

Language regions exhibit high stimulus-related activity
Having established that model-selected stimuli could indeed drive and 
suppress brain responses in the language network of new individuals 
(Figs. 2 and 3), our next goal was to investigate what kinds of linguistic 
input the LH language network is most responsive to. Before delving 
into that investigation, however, we wanted to assess whether the LH 
language regions show reliable responses to and track properties of 
linguistic stimuli. We also wanted to assess the similarity among the 
language fROIs in their fine-grained linguistic preferences to decide 
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Fig. 2 | Model-selected sentences successfully drive and suppress responses 

in the language network. a, We used our encoding model to select sentences 

that would elicit maximal response (drive sentences) or minimal response 

(suppress sentences) in the functionally defined language network. To define 

fROIs, we used demarcations (‘language parcels’; shown on the surface-inflated 

Montreal Neurological Institute (MNI) 152 template brain) within which most or 

all individuals in prior studies showed activity for the language localizer contrast 

in large samples (for example, refs. 2,4). We defined the LH language network as 

regions within the borders of these five parcels that were activated (top 10%) in 

the functional localizer acquired for each participant (see the brain visualizations 

in b and c). b, The average language network fMRI response across 250 drive, 

250 suppress and 1,000 baseline sentences for n = 3 evaluation participants, 

collected in an event-related, single-trial fMRI paradigm. In both b and c, the 

individual points show the average of each condition per participant. fMRI 

responses were z-scored session-wise (see Supplementary Information section 

12a for the responses without normalization; no key patterns are affected). The 

evoked BOLD response was 85.7% higher for drive than for baseline and 97.5% 

lower for suppress than for baseline (Supplementary Information section 12a). 

The error bars show the within-participant standard error of the mean. The brain 

illustrations show the functionally defined language network in the participants 

of interest on the surface-inflated brain, visualized in Freeview. For the surface 

projections, volumetric data (in MNI IXI549Space; SPM12 (ref. 100)) were 

registered to FreeSurfer’s CVS35 (combined volumetric and surface-based) in the 

MNI152 space using mri_vol2surf in FreeSurfer v.7.3.2 (ref. 101) with a projection 

distance of 1.5 mm and otherwise default parameters. c, The average language 

network fMRI response across 240 drive, 240 suppress and 240 baseline 

sentences (randomly sampled from the superset of 250 drive, 250 suppress 

and 1,000 baseline sentences) for n = 4 evaluation participants, collected in a 

blocked fMRI paradigm. The evoked BOLD response was 12.9% higher for drive 

than for baseline and 56.6% lower for suppress than for baseline (Supplementary 

Information section 12b). d, Example sentences from each condition.
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whether it may be worth examining the fROIs separately in addition to 
examining the language network as a whole.

First, we quantified NCs for the language regions along with a set of 
control brain regions (Fig. 4a). An NC for a brain region is a measure of 
stimulus-related response reliability and is typically expressed in terms 
of the fraction of variance that can be attributed to the stimulus rather 
than to measurement noise. Standard approaches for NC estimation 
leverage repeated stimulus presentations, with the core assumption 
that repeated presentations should yield the same brain response30,31. 
Because in the current study, each sentence was presented only once to 
a given participant (for the motivation for this design choice and details 
of the procedure, see the Methods and Discussion), we developed a 
procedure for NC estimation that uses the repeated presentations of 
the same sentence across participants, allowing for estimation of reli-
ability in single-repetition paradigms (Supplementary Information 
section 5). Using this procedure, we computed NCs on the basis of the 
brain responses to the 1,000 baseline sentences for the n = 5 train par-
ticipants in the language regions and a set of control regions (Fig. 4a). In 
particular, we examined two large-scale brain networks that have been 
linked to high-level cognitive processing—the multiple demand (MD) 
network32 and the default mode network (DMN)33—which we defined 
using independent functional localizers (see Supplementary Informa-
tion section 15 for the details) (Fig. 4a). For additional comparison, we 
examined a set of anatomical parcels34 that cover a large fraction of the 
cortical surface (Supplementary Information section 8).

Prior studies have demonstrated high consistency of responses in 
language regions across participants using naturalistic story-listening 
paradigms35–37. In line with those studies, we found that in our 
single-sentence paradigm, language regions were also characterized 
by high NCs. The ceiling values were higher than those observed in 
the two other functional networks (Fig. 4a) and in anatomical areas 
across the brain (including anatomical areas that fall in spatially similar 

locations to the language areas, which provides further evidence for the 
advantages of functional localization38; Supplementary Information 
section 8). In particular, for the LH language areas, the NC was estimated 
to be r = 0.56 (split-half s.e., 0.03); that is, ~31% of the variance in the 
responses of these areas at the group level can be considered ‘true’, 
stimulus-related signal. For comparison, for the MD network, the NC 
was estimated to be r = 0.07 (s.e. = 0.11) (for the LH MD areas) and r = 0.27 
(s.e. = 0.10) (for the right hemisphere (RH) MD areas; see ref. 37 for 
convergent evidence from a different approach), and for the DMN, the 
NC was estimated to be r = 0.11 (s.e. = 0.11) (for the LH DMN areas) and 
r = 0 (s.e. = 0.05) (for the RH DMN areas). The LH language network NC 
values were significantly higher than the NC in each of these four net-
works—LH and RH MD and DMN (d.f. = 3,998, all four P < 0.001, all four 
t > 126 via Bonferroni-corrected two-sided independent t-tests using 
split-half bootstrap NC values). Thus, other brain regions implicated in 
high-level cognition (MD and DMN) were not as reliable as the language 
regions in their responses to linguistic stimuli (and similarly not as well 
predicted by GPT2-XL features; Supplementary Information section 8).  
In summary, the high NCs of the language regions show that these 
regions process stimulus-related information in a similar way across 
participants (see also refs. 35–37), opening the door to investigations of 
what stimulus properties affect neural responses (see the next section).

Second, we examined whether the five regions that comprise the 
LH language network are similar in their responses at the fine-grained 
level of single sentences. Prior work has demonstrated that the LH 
language regions exhibit similar functional response profiles in terms 
of their selectivity for language relative to non-linguistic inputs (see 
ref. 9 for a review) and similar sensitivity to diverse linguistic manipula-
tions7,11,29, as well as highly correlated time courses during naturalistic 
paradigms8,27,28,39. Here we investigated whether the five LH language 
regions have similar preferences for some sentences over others across 
n = 1,000 or n = 1,500 sentences.
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Fig. 3 | The encoding model maintains high predictive performance for brain 

responses from three new participants to out-of-distribution sentences. 

Sentence-level brain responses as a function of the predicted responses along 

with sentence examples. Predicted brain responses were obtained from the 

encoding model (x axis). The observed brain responses (y axis) are the average 

of n = 3 evaluation participants’ language network responses (illustrated for 

individual participants in Supplementary Information section 13). The blue 

points represent the suppress sentences, the grey points represent the baseline 

sentences and the red points represent the drive sentences. The suppress and 

drive sentences were selected to yield low or high brain responses, respectively, 

and are therefore clustered on the low and high ends of the prediction axis (x 

axis). The dashed horizontal lines show the mean of each condition. The inset 

shows the simulated sentence-level brain responses as a function of predicted 

responses. Predicted brain responses were obtained from the encoding model 

(x axis). The simulated brain responses (y axis) were obtained by sampling from 

a noise distribution representing the empirical inter-participant variability. This 

plot illustrates the maximum possible predictive performance, given inter-

participant variability and fMRI measurement noise.
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a NC for fROIs across three large-scale brain networks
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b Correlation of LH language fROIs
across baseline sentences
(n = 5 train participants)

c Correlation of LH language fROIs
across baseline/drive/suppress sentences
(n = 3 evaluation participants) 

Fig. 4 | LH language regions show a high degree of stimulus-related activity 

for linguistic input relative to other brain areas, and the LH language regions 

show functionally similar responses. a, We quantified the noise ceiling (NC), a 

measure of stimulus-related response reliability, across all functionally defined 

ROIs in the language network (red), the MD network (blue) and the DMN (green). 

For the language network, we defined 10 such fROIs (along with the ‘Language 

LH/RH network’ fROI, which is the mean across all voxels in the fROIs within 

the network and hemisphere, yielding 12 ROIs in total); for the MD network, we 

defined 21 fROIs (note that one participant did not show a response to the MD 

localizer in the MD LH midFrontalOrb ROI, and hence this ROI was excluded in 

the NC computation); and for the DMN network, we defined 14 fROIs. The grey 

shaded areas indicate the network-level fROIs. The points show the NC estimate 

computed across n = 1,000 baseline sentences across n = 5 train participants, for 

each of the ROIs. The error bars show the NC reliability quantified as the standard 

error over NC values computed from 1,000 splits of the data (Supplementary 

Information section 5b). The brain illustrations show the anatomical parcels 

(demarcations) that were used to constrain the selection of participant-specific 

fROIs for each network on the surface-inflated MNI152 template brain. b, The 

Pearson correlation matrix computed over n = 1,000 baseline sentences for the 

average of n = 5 train participants. The first five rows/columns show the five core 

LH language fROIs (IFGorb, IFG, MFG, AntTemp and PostTemp; see ‘Definition 

of ROIs’ in Methods). The sixth row/column shows the full LH language network 

consisting of the average of the voxels from the five fROIs; these values show 

how representative the language network as a whole is of each of the five fROIs. 

c, Same as in b, but for the n = 1,500 drive/suppress/baseline sentences for 

the average of n = 3 evaluation participants (derived using the main, search 

approach). Correlation matrices for individual participants are shown in 

Supplementary Information section 4.
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Figure 4b shows the Pearson correlation across the n = 1,000 
baseline sentences for LH fROIs from the average of n = 5 train par-
ticipants. Correspondingly, Fig. 4c shows the correlation across 
the n = 1,500 drive/suppress/baseline sentences for LH fROIs from 
the average of n = 3 evaluation participants. Both plots show high 
inter-fROI correlations for the LH language network (correlation 
range, 0.47–0.83), which suggests that even in their fine-grained 
preferences for particular linguistic stimuli, the LH language fROIs 
show a high degree of similarity. Along with the prior body of evi-
dence noted above, these high correlations motivated our decision 
to investigate what kinds of linguistic input engage this network as a 
whole (see the next section).

Sentence complexity modulates language network responses
To gain an understanding of what sentence properties modulate brain 
responses in the language network, we obtained a set of 11 features 
to characterize our experimental materials (n = 2,000 sentences: 
1,000 baseline, 250 drive and 250 suppress sentences from the search 
approach, and 250 drive and 250 suppress sentences from the explora-
tory modify approach; Supplementary Information section 16) and 
correlated these features with sentence-level brain responses (see 
‘Sentence properties that modulate brain responses’ in Methods). The 
choice of features was inspired by past work in linguistics/psycholin-
guistics and cognitive neuroscience of language. First, building on prior 
evidence that surprisal (the degree of contextual predictability, which is 
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Fig. 5 | Surprisal and several other sentence properties modulate responses 

in the language network. a, Correlation of the LH language network response 

with 11 sentence properties (columns) in five categories for all n = 2,000 

sentences (first row; drive, suppress and baseline sentences averaged across 

n = 5 train and n = 5 evaluation participants) and for n = 1,000 baseline 

sentences (second row; similarly averaged across n = 5 train and n = 5 evaluation 

participants). b, Correlation among the sentence properties shown for either 

n = 2,000 sentences (left) or n = 1,000 sentences (right). The colour scale is the 

same as in a. c, Sentence-level brain responses as a function of sentence property. 

The brain responses (y axis) were averaged across n = 5 train and n = 5 evaluation 

participants. The sentence properties were derived from behavioural norming 

experiments in independent participants (besides the ‘log probability’ feature, 

which was estimated using GPT2-XL). The inset line graphs show the average 

brain response with each property grouped into six uniformly spaced bins. The 

error bars show the standard error of the mean across items in each bin (often 

not visible given the large number of data points). For the behavioural norms, 

the bins were defined according to the rating scale—that is, [1,2], [2,3], [3,4], [4,5], 

[5,6] and [6,7]. For log probability, the bins were similarly uniformly spaced, but 

according to the range of surprisal values: [−13.1,−11.3], [−11.3,−9.4], [−9.4,−7.5], 

[−7.5,−5.7], [−5.7,−3.8] and [−3.8,−1.9] (omitted in the x-axis label). The shade 

of the points in these graphs denotes the amount of data in each bin (darker 

points correspond to larger amounts of data; bins containing less than 1% of 

the data (that is, 20 responses) were omitted from the line graphs). Statistical 

comparisons accompanying the inset plots can be found in Supplementary 

Information section 24.
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typically estimated as the negative log probability) modulates language 
processing difficulty in both behavioural psycholinguistic work40–42 
and brain imaging investigations43–47, we computed sentence-level log 
probability estimates for each of 2,000 sentences using GPT2-XL (see 
‘Sentence properties that modulate brain responses’ in Methods). Sec-
ond, we collected ten behavioural rating norms from a total of n = 3,600 
participants (on average, 15.23 participants per sentence per norm; 
minimum, 10; maximum, 19). The norms spanned five broad catego-
ries and were selected on the basis of prior behavioural (for example, 
refs. 40,48–50) and neural studies (for example, refs. 11,51–53). The 
first category targeted two core aspects of sentences: grammatical 
well-formedness (how much does the sentence obey the rules of English 
grammar?) (for details of the instructions, see Supplementary Informa-
tion section 22c) and plausibility (how much sense does the sentence 
make?). Because sentence surprisal (log probability), as estimated with 
GPT2-XL, is likely to capture both of these aspects to some extent54–56, 
we grouped these two norms with surprisal in the analyses. Further-
more, because surprisal probably captures diverse aspects of form and 
meaning more generally, we examined the norm–brain relationships for 
all other norms after factoring out variance due to surprisal. Inspired 
by work on distributed neural representation of meaning, including 
across the language network57,58, the next three norms probed different 
aspects of the sentence’s content: how much does the sentence make 
you think about (1) others’ mental states, (2) physical objects and their 
interactions, and (3) places and environments? The latter two have to 
do with the physical world, and the former, with internal representa-
tions; the physical-versus-social distinction is one plausible organizing 
dimension of meaning59,60. Two norms probed emotional dimensions 
of the sentences: valence (how positive is the sentence’s content?) and 
arousal (how exciting is the sentence’s content?). One norm targeted 
visual imagery (how visualizable is the sentence’s content?). Finally, 
the last two norms probed people’s perception of how common the 
sentence is, in general versus in conversational contexts.

Figure 5a shows the correlation between the language network 
response and each of the 11 sentence properties across the five catego-
ries. The sentences spanned a broad range of brain responses, as evi-
denced in the sentence-level scatter plots in Fig. 5c (y axis). Importantly, 
this broad range was made possible by our approach of specifically 
designing stimuli to drive and suppress neural responses. Notice how 
the drive and suppress sentences cover parts of the linguistic space 
that are barely covered by the set of naturalistic baseline sentences 
(for comparisons of linguistic properties among conditions, see Sup-
plementary Information section 19).

In terms of the effects of different sentence properties on neural 
responses, first, we found that less probable (that is, more surprising) 
sentences elicited higher brain responses (Fig. 5c) (r = −0.30 for the 
n = 1,000 baseline sentences, d.f. = 998, P < 0.001, t = −9.83, s.e. = 0.03; 
see Fig. 5c for the correlation values for the full set of n = 2,000 sen-
tences and Supplementary Information section 20 for robustness 
to model choice to derive surprisal). This result aligns with previous 
evidence for a positive effect of surprisal on brain responses in MEG/
EEG45,47 and fMRI43,44,46. Similarly, for the predictors related to a sen-
tence’s grammaticality and plausibility, sentences that were rated 
as less grammatical or plausible elicited higher responses (r = −0.31, 
r = −0.30, d.f. = 998, t = −11.92, t = −12.79, both P < 0.001, both s.e. = 0.03; 
the two norms were correlated with each other at r = 0.74). To under-
stand whether grammaticality or plausibility explained variance 
above and beyond surprisal and each other, we fitted LME models 
with different sets of sentence properties as predictors and compared 
these using likelihood ratio tests (see ‘Statistical analyses’ in Methods 
and Supplementary Information section 23). Plausibility explained 
variance beyond surprisal and grammaticality (χ2 = 17.86, P < 0.001; 
all likelihood ratio statistics are reported on the baseline set). Simi-
larly, grammaticality explained variance beyond surprisal and plau-
sibility (χ2 = 12.97; P < 0.001), albeit to a lesser extent. Interestingly,  

a finer-grained examination of the relationship between these features 
and neural responses reveals a nonlinearity, such that sentences in the 
mid-range of grammaticality and plausibility elicit stronger responses 
than sentences on the lower and higher ends of the scales (Fig. 5c). 
This pattern suggests that two effects may be at play: an increase in 
neural response is seen (1) for sentences that better adhere to form and 
meaning regularities of language (similar to the previously reported 
stronger responses to sentences than to lists of words2,61,62) and (2) for 
sentences that may have greater processing costs due to their unex-
pected form and/or meaning (for example, see refs. 44,63 for evidence 
of a strong relationship between behavioural processing difficulty and 
the strength of neural response in the language areas).

For the properties that relate to the sentence content, we found no 
increase in explained variance (beyond surprisal) related to whether 
the sentence concerned others’ mental states (χ2 = 0.69, P = 0.407). 
This finding aligns with evidence that the language network does not 
support mental state inference and is robustly dissociated from the 
theory of mind network (for example, ref. 28), and challenges claims 
that the language areas are modulated by social content (for exam-
ple, refs. 64,65). However, whether the sentence’s content concerned 
physical objects or places correlated negatively with brain responses 
(both r = −0.22, d.f. = 998, both P < 0.001, t = −7.04 and t = −7.11, both 
s.e. = 0.03) and explained variance beyond surprisal (physical objects: 
χ2 = 74.26, P < 0.001; places: χ2 = 63.47, P < 0.001; the two norms were cor-
related with each other at r = 0.53). Note, however, that these two aspects 
of the sentence content were also strongly correlated with imageability 
(discussed below), which may be the underlying driver of these effects.

For the properties that relate to the emotional aspects of sen-
tences, we found that valence correlated negatively with brain 
responses, such that more positive sentences elicited a lower response 
(r = −0.15, d.f. = 998, P < 0.001, t = −4.69, s.e. = 0.03), and it explained 
some variance beyond surprisal (χ2 = 16.53, P < 0.001). In contrast, 
whether the sentence was exciting did not explain additional variance 
beyond surprisal (r = −0.03, d.f. = 998, P = 0.329, t = −0.98, s.e. = 0.03; 
likelihood ratio, χ2 = 0.18, P = 0.668).

Imageability—whether sentences are easy to visualize—was 
strongly correlated with whether the sentence’s content concerned 
physical objects (r = 0.75) and places (r = 0.49). Imageability strongly 
modulated brain responses, such that sentences rated as more image-
able elicited a lower response (r = −0.30, d.f. = 998, P < 0.001, t = −10.04, 
s.e. = 0.03), and it explained variance beyond surprisal (χ2 = 93.03, 
P < 0.001).

Finally, for perceived frequency, we found that sentences that are 
perceived as more frequent (either in general or in conversational set-
tings; these two norms were correlated with each other at r = 0.77) elic-
ited lower responses (r = −0.41 and r = −0.33, d.f. = 998, both P < 0.001, 
t = −14.14 and t = −10.89, both s.e. = 0.03), with additional variance 
explained beyond surprisal (general perceived frequency: χ2 = 96.63, 
P < 0.001; conversational perceived frequency: χ2 = 44.46, P < 0.001).

To summarize the findings in this section, sentences that are sur-
prising, fall in the middle of the grammaticality and plausibility range 
and are perceived as not very frequent elicit a stronger response in the 
language network. In contrast, sentences that have positive content, 
talk about physical objects and places, and, more generally, are easy to 
visualize elicit a lower response in the language network (Fig. 5). These 
patterns were highly similar across individual LH language fROIs and 
anatomically defined language ROIs but showed some differences from 
the RH language network, in line with some past claims (Supplementary 
Information section 21).

Discussion
We provide a demonstration of non-invasive neural activity control 
in areas that are implicated in higher-level cognition: a brain-aligned 
Transformer model (GPT2-XL) can be used to drive and suppress brain 
responses in the language network of new individuals. We also provide 
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a rich characterization of stimulus properties that modulate neural 
responses in the language network and find that less probable sentences 
generally elicit higher responses, with additional contributions from 
several form- and meaning-related features.

A number of studies have now shown that representations 
extracted from neural network models of language can capture neu-
ral responses to language in human brains, as recorded with fMRI or 
intracranial methods18–23,66–68. These studies have been conducted in 
an ‘open-loop’ manner: brain responses are simply acquired to a set of 
stimuli without any attempt to achieve specific levels of brain activity 
according to quantitative predictions. These stimulus sets have been 
limited to naturally occurring sentences, which cover a restricted por-
tion of the space of linguistic/semantic variation. Furthermore, the 

encoding model is typically trained and tested on data from the same 
participant (for example, refs. 18–23, but see ref. 68), potentially mak-
ing it overly reliant on patterns of participant-specific idiosyncrasies. 
Prior work has thus established similarity between LLMs and humans 
on a narrow distribution of linguistic input and using within-participant 
evaluation in an open-loop fashion. In this work, we went beyond these 
studies by taking inspiration from closed-loop stimulus design in visual 
systems neuroscience24,25: we evaluated the ability of an LLM-based 
encoding model to modulate the strength of neural responses in new 
individuals via new model-selected stimuli. Unlike typical encoding 
or representational similarity approaches to testing neural networks 
as models of the brain, we here used their predictive power to gener-
ate stimuli that would maximally drive or suppress responses of the 
language network. We emphasize that although using LLMs to identify 
new stimuli requires similarity to the human brain, this similarity need 
not hold at the implementation level, only at the level of representa-
tions. We, and others, acknowledge that the hardware of LLMs dif-
fers in many ways from human neural circuits (but see ref. 69). These 
hardware differences, possibly coupled with factors such as training 
data and objective, could explain why LLMs sometimes diverge from 
human-level performance for common linguistic phenomena such 
as negation and quantifier use70,71. Nevertheless, in spite of these dif-
ferences, LLMs and the human language system appear to arrive at 
a similar representational space (see ref. 72 for similar findings in 
vision), making LLMs currently the most predictive models of the 
human language network at the granularity of fMRI voxels and intrac-
ranial recordings20,22, and allowing us to modulate brain responses via 
targeted stimulus selection.

A priori, one might expect this model-based stimulus selection 
approach to not be feasible within the domain of language because of at 
least two reasons. First, unlike largely bottom-up brain systems such as 
the ventral visual stream73, the language system extracts abstract mean-
ing representations from linguistic sequences, which makes these rep-
resentations further removed from the stimulus proper and thus more 
divergent across individuals, especially for more abstract meanings74. 
Second, language processing requires attentional engagement75, and 
such engagement is difficult to sustain for an extended period, espe-
cially if stimuli are repeated. One recent approach to combat fatigue/
boredom has been to turn to rich naturalistic stimuli, such as stories, 
podcasts or movies, and to collect massive amounts of data (sometimes 
many hours’ worth) from a small number of individuals31,57—what is 
often referred to as the ‘deep data’ approach76. However, such stimuli 
plausibly do not sample the space of linguistic and/or semantic vari-
ation well (see Supplementary Information section 10 for evidence) 
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and consequently do not allow for testing models on stimuli that differ 
substantially from those used during training. We solved these meth-
odological challenges by collecting neural responses to each of 1,000 
semantically, syntactically and stylistically diverse sentences for each 
participant in rapid, event-related fMRI, presented once to maximize 
engagement (Fig. 6). We extended existing state-of-the-art methods for 
single-trial modelling30 and reliability estimation (for example, ref. 31) 
to obtain robust neural responses to each sentence. Even with robust 
neural data, it was unclear whether encoding model performance is 
contingent on features that are specific to the stimulus set and/or to 
the participant at hand, which would limit generalization to (1) stimuli 
that differ from the ones in the training set and/or (2) brain data from 
new individuals. By showing that model-selected stimuli successfully 
modulate brain responses in new individuals in ways predicted by the 
model, we established that LLM representations contain information 
that can be utilized for causal perturbation of language responses in 
the human brain in a general, participant-independent manner.

We identified sentences that would push neural activity towards 
the edges of the stimulus–response distribution (driving and sup-
pressing) using quantitative model-based predictions. Obtaining 
neural responses that span a wide range of activation levels enabled 
us to ask which stimulus properties maximally (or minimally) engage 
the language network in the human brain, bringing us closer to under-
standing the representations and computations that support language 
comprehension. This general approach dates back to the pioneering 
work of Hubel and Wiesel77 that provided an understanding of visual 
cortical computations by examining what stimuli cause each neuron 
to respond the most. Because linguistic input is extremely rich and 
language-responsive neuronal populations could, in principle, be 
tuned to many (possibly interacting) dimensions related to lexical, 
syntactic, semantic or other linguistic properties, including ones that 
were not hypothesized in advance, we here identified target drive and 
suppress sentences using model predictions, thus removing experi-
menter bias.

Of course, a predictive model can be developed using features 
from any quantitative representation of sentences, including hidden 
states from an LLM (as we do here) but also much simpler univariate 
measures of different linguistic properties. Following a reviewer’s sug-
gestion, we explicitly compared the predictivity performance of our 
encoding model, which uses GPT2-XL hidden states as features, to the 
performance of three encoding models that use univariate measures of 
surprisal (we focused on surprisal given its prominence in theorizing 
and empirical work on language40–47). The encoding models based on 
univariate surprisal estimates perform substantially lower than the 
encoding model based on GPT2-XL hidden states (Supplementary 
Information section 17). Importantly, however, our motivation for 
using GPT2-XL representations goes beyond predictivity performance. 
LLMs allow for an assumption-neutral and multi-faceted approach to 
stimulus identification. Because LLMs are optimized for next-word 
prediction, their representations contain information about linguistic 
regularities at all levels, from word-level properties (including both 
word forms and their meanings), to syntactic structure, to semantic 
compositional meanings78–80. This is because all of these properties 
can inform what word is likely to come next. By virtue of its assumption 
neutrality, this approach allows for bottom-up discovery. Surprisal 
models (for example, based on n-grams or structure probabilities in a 
PCFG parser; Supplementary Information section 20) have the advan-
tage of being interpretable but can only be used for testing specific 
hypotheses. Neural network language models can also be leveraged to 
test specific hypotheses but additionally enable bottom-up discoveries 
of features that may not have been hypothesized in advance.

Indeed, we identified drive sentences that we could not have come 
up with in advance. These sentences were unusual on various dimen-
sions related to their linguistic properties (Supplementary Information 
section 19) and highly distinct from the naturalistic baseline sentences 

(Supplementary Information section 11; note that the suppress sen-
tences were more akin to naturalistic sentences), making these sen-
tences a priori unlikely to be created or selected by experimenters and 
unlikely to be present in naturalistic stimuli, such as stories or movies 
(Supplementary Information section 10). Yet these stimuli were able 
to drive responses in the language network.

To understand what stimulus properties modulate neural 
responses, we examined the effects of 11 sentence properties on the 
brain responses to the linguistically diverse set of 2,000 sentences. 
In line with much past work43–47, we found that surprisal has a strong 
effect on neural activity, with less probable sentences eliciting higher 
responses. However, a number of other properties explained vari-
ance beyond surprisal, including grammatical well-formedness and 
plausibility. Examining responses to a highly diverse set of sentences 
revealed a nonlinearity in neural response in the form of an inverted-U 
shape. Sentences in the mid-range of well-formedness and plausibility 
elicit the highest response. This response is higher than the response to 
sentences in the low range, similar to the previously reported findings 
of stronger responses to phrases and sentences than to lists of uncon-
nected words2,61,62. The response is also higher than the response to 
sentences in the high range—sentences that are highly plausible and 
use common grammatical structures—which are easy to process41. Put 
differently, it appears that to elicit a strong response in the language 
network, a stimulus has to sufficiently resemble the kind of input we 
encounter in our experiences with language, given that our experiences 
presumably tune the language network to those kinds of stimuli. How-
ever, once some minimal level of language-likeness is reached, neural 
responses are modulated by processing difficulty, which depends 
on a combination of lexical, syntactic and semantic features. Finally, 
one contribution of this work relative to past brain imaging studies is 
that we show sensitivity to these different linguistic properties at the 
fine-grained level of individual sentences (unlike standard blocked 
or event-related designs where groups of sentences are compared). 
In this way, we believe that this rich dataset powerfully complements 
and extends prior evidence43,44,46,51,63,81 and allows for the testing of 
new hypotheses about linguistic/semantic properties affecting neural 
responses.

A few limitations and future directions are worth noting. First, we 
here studied the language network—comprising three frontal and two 
temporal areas—as a whole. As discussed earlier, there are good reasons 
to adopt this approach: the different regions of this network have simi-
lar functional response profiles, with respect to both their selectivity 
for language9,26 and their responses to linguistic manipulations7,11,29, 
and they exhibit highly correlated time courses during naturalistic 
cognition paradigms8,27,28,39. However, some functional heterogene-
ity has been argued to exist within the language network61,82. Future 
efforts using an approach like the one adopted here may discover 
functional differences within the language network (by searching for 
stimuli that would selectively drive particular regions in the network) 
as well as between the core LH language network and the RH homo-
topic areas and other language-responsive cortical, subcortical and 
cerebellar areas. Second, the current results are limited to English but 
can be extended to other languages given the advances in multi-lingual 
language models. Third, we have here relied on fMRI—a method with 
an inherently limited temporal resolution. Data from fMRI could be 
fruitfully supplemented with data from intracranial recordings, which 
would allow for model representations to be related to neural activity in 
a temporally resolved, word-by-word fashion and potentially uncover 
functional dissociations that are obscured when activity is averaged 
across adjacent words. Finally, novel ways of quantifying properties 
of linguistic input (for example, based on the LLM representational 
space83) hold great potential to further understand how certain sen-
tences modulate responses in the mind and brain.

In conclusion, we demonstrate modulation of brain responses 
in the language network in new individuals in a closed-loop manner. 
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This work has far-reaching implications for neuroscientific research 
and clinical applications. In particular, an accurate model-to-brain 
encoding model can serve as a quantitative, assumption-neutral tool 
for deriving experimental materials aimed at understanding the func-
tional organization of the language network and putatively down-
stream areas that support abstract knowledge and reasoning84–86. 
Moreover, accurate encoding models can be used as a ‘virtual language 
network’ to simulate experimental contrasts in silico87. In particular, 
the model-selected sentences can be queried in a high-throughput 
manner to analyse the response properties of the language network 
in detail, providing the ability to rapidly generate novel hypotheses 
about language processing that can then be tested in a closed-loop 
manner. For prospective clinical application, stimuli can be optimized 
for eliciting a strong response, thus allowing for efficient identification 
of language circuits, which may be especially important for individuals 
with brain disorders and other special populations, or in circumstances 
where time is of essence (for example, neurosurgical planning and 
intraoperative testing). Finally, integrating the rapid advancements 
of artificial neural network models with larger and/or time-resolved 
measures of neural activity opens the door to even more fine-grained 
control of areas implicated in higher-level cognition.

Methods
All experiments were performed with ethical approval from the Com-
mittee on the Use of Humans as Experimental Subjects at the Massachu-
setts Institute of Technology (MIT) (protocol number 2010000243). 
All participants gave informed written consent before starting the 
experiments.

We developed an encoding model to predict brain responses in the 
language network to arbitrary new sentences and evaluated this model 
by (1) identifying novel sentences that are predicted to activate the 
language network to a maximal (or minimal) extent and (2) collecting 
brain responses to these sentences in new participants. We then inves-
tigated which stimulus properties drive the responses in the language 
network (see Fig. 6 for an overview of the study).

Encoding model development
General approach and data collection. We developed an encoding 
model of the LH language network in the human brain. Developing an 
encoding model requires brain responses to a broad range of linguistic 
input. We therefore curated a large set of diverse, corpus-extracted 
six-word sentences (n = 1,000, baseline set); collected brain responses 
while five participants (train participants) read each sentence in an 
event-related, condition-rich fMRI paradigm (each sentence equals 
a condition) across two sessions each; and modelled those responses 
using a recently developed single-trial modelling framework30, which 
we adapted for no-repeats designs (‘fMRI experiments’ and Supple-
mentary Information section 3). The baseline set consisted of two 
subsets: the first subset (n = 534 sentences) aimed to maximize seman-
tic diversity to cover a broad range of topics, and the second subset 
(n = 466 sentences) was selected from across diverse genres and styles 
(newspaper text, web media, transcribed spoken language and so on) 
(Supplementary Information section 1). In five train participants, we 
recorded brain responses to the sentences in the baseline set across 
two scanning sessions (Fig. 6a). The participants were instructed to 
read attentively and think about the sentence’s meaning. To encourage 
engagement with the stimuli, prior to the session, the participants were 
informed that they would be asked to perform a short memory task 
after the session (‘fMRI experiments’). The sentences were presented 
one at a time for two seconds with a four-second inter-stimulus interval 
(ISI). Each run contained 50 sentences (5:36 minutes), and the sentence 
order was randomized across participants.

The language network was defined functionally in each participant 
using an extensively validated localizer task2,4 (‘Definition of ROIs’). 
Although the network consists of five areas (two in the temporal lobe 

and three in the frontal lobe), we treat it here as a functionally inte-
grated system given the similarity among the five regions in their func-
tional response profiles across dozens of experiments (for example, 
refs. 11,29,46; see Fig. 4b,c and Supplementary Information section 4 
for evidence of similar preferences for the baseline set in the current 
data) and high inter-regional correlations during naturalistic cogni-
tion paradigms8,27,28,36,39. To mitigate the effect of collecting data across 
multiple scanning sessions and to equalize response units across voxels 
and participants, the BOLD responses were z-scored session-wise per 
voxel. BOLD responses from the voxels in the LH language network 
were averaged within each train participant (‘Definition of ROIs’) and 
averaged across participants to yield an average language network 
response to each of the 1,000 baseline set sentences.

Encoding model. To develop an encoding model of the language 
network, we fitted a linear model from the representations of an LLM 
to brain responses (an encoding approach). The brain data that were 
used to fit the encoding model were the averaged LH language net-
work responses from the n = 5 train participants. To map from LLM 
representations to brain responses, we used a linear mapping model. 
Note that the term ‘mapping model’ refers to the regression model 
from LLM representations to brain activity, while the term ‘encoding 
model’ encompasses both the LLM used to transform a sentence into 
an embedding representation as well as the mapping model.

The mapping model was an L2-regularized (‘ridge’) regression 
model, which can be seen as placing a zero-mean Gaussian prior on the 
regression coefficients88. Introducing the L2 penalty on the weights 
results in a closed-form solution to the regression problem, which is 
similar to the ordinary least-squares regression equation:

w = (X

T

X + αI)

−1

X

T

y +w

0

where X is a matrix of regressors (n stimuli by d regressors). The regres-
sors are unit activations from the sentence representations derived 
by exposing an LLM to the same stimuli as the human participant was 
exposed to, and d refers to the number of units in the LLM embedding 
representation (‘hidden size’). y is an n-length column vector contain-
ing the relevant brain ROI’s mean response to each stimulus. I is the 
identity matrix (d by d). w is a d-length column vector with the weights 
learned for each regressor. w0 is the intercept term.

α is the regularization parameter that trades off between the fit to 
the data and the penalty for weights with high coefficients. To select 
this regularization parameter, we used leave-one-out cross-validation 
implemented using the scikit-learn Python library function RidgeCV 
(ref. 89; v.0.24.2). Specifically, for each of 60 logarithmically spaced α 
regularization parameter values (1 × 10−30, 1 × 10−29, …, 1 × 1028, 1 × 1029), 
we measured the squared error in the resulting prediction of the left-out 
stimulus using regression weights derived from the other stimuli in the 
data. We computed the average of this error (across the stimuli) for 
each of the 60 potential α regularization parameter values. We then 
selected the α regularization parameter that minimized this mean 
squared error (α = 10,000). When cross-validation was performed, the 
α regularization parameter was always selected using the stimuli in the 
train split, and with the α parameter selected, the regression model 
using that parameter was used on the test split.

Encoding model performance. We obtained an unbiased estimate 
of encoding model performance using three different approaches: 
(1) cross-validated predictivity performance on held-out sentences 
(Supplementary Information section 6), (2) cross-validated predictiv-
ity performance on held-out participants within the train participants 
(Supplementary Information section 7) and (3) held-out prediction 
performance on new participants (evaluation participants) and sen-
tences (see ‘Encoding model evaluation’ in Methods and ‘The model 
captures most explainable variance in new participants’ in Results).
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Sentence representations from LLMs. To obtain sentence represen-
tations for the encoding model, we used the unidirectional-attention 
Transformer LLM GPT2-XL14, which was identified as the most 
brain-aligned language base model in prior work20 and which was the 
largest unidirectional OpenAI GPT model available on HuggingFace90 
at the time of the experiments (summer 2021). (Supplementary analy-
ses were performed using BERT-large (Supplementary Information 
section 6c).) We used the pretrained model available via the Hugging-
Face library90 (transformers v.4.11.3; https://huggingface.co/gpt2-xl). 
GPT2-XL has 48 layers (that is, Transformer blocks) in addition to the 
embedding layer. The embedding dimension is 1,600. We obtained 
model representations by tokenizing each sentence using the model’s 
standard tokenizer (GPT2TokenizerFast) and passing each sentence 
through the model. We retrieved model representations for each model 
layer (that is, at the end of each Transformer block). Given that human 
participants were exposed to the whole sentence at once, we similarly 
computed a sequence summary representation for each sentence. We 
obtained the representation of the last sentence token, given that uni-
directional models aggregate representations of the preceding context 
(that is, earlier tokens in the sentence). Furthermore, to ensure that 
the results were robust to this choice of summary representation, we 
also obtained a sequence summary representation by computing the 
arithmetic mean of the representations associated with each token in 
each sentence (Supplementary Information section 6b). The resulting 
features were used as regressors in the LLM–brain comparisons. Each 
LLM layer (the model stage for which representations were extracted—
that is, Transformer blocks) was treated as a separate set of regressors 
in the LLM–brain comparisons. Layer 22 features were selected as 
regressors in the encoding model on the basis of cross-validated model 
performance evaluation (Supplementary Information section 6a).

Encoding model evaluation
Using our trained encoding model, we identified a set of new sentences 
to activate the language network to a maximal extent (drive sentences) 
or a minimal extent (suppress sentences). To do so, we searched across 
~1.8 million sentences to identify sentences predicted to elicit high 
or low fMRI responses (250 sentences of each kind) (Fig. 6b and Sup-
plementary Information section 9). We collected brain responses 
to these novel sentences from three new participants (across three 
sessions each). The drive and suppress sentences were randomly inter-
spersed among the 1,000 baseline sentences (for a total of n = 1,500 
sentences), collected across three scanning sessions per participant 
(n = 9 sessions total). (In a more exploratory component of the study, 
we complemented the search approach with another approach—the 
modify approach—where we used gradient-based modifications to 
transform a random sentence into a novel sentence/string predicted 
to elicit high or low fMRI responses. We collected brain responses to 
these novel sentences in two new participants (see Supplementary 
Information section 16 for the details of methods and the results)).

To ensure that the results were robust and generalizable to differ-
ent experimental paradigms, we additionally collected fMRI responses 
to a large subset of the drive and suppress sentences along with the 
baseline sentences in a traditional blocked design with four independ-
ent participants (one scanning session each). The participants for the 
blocked experiment were exposed to a total of 720 unique sentences 
(from the baseline, drive and suppress conditions, 240 per condition, 
which were randomly sampled for each participant). The sentences 
were grouped into blocks of five sentences from the same condition 
and were presented on the screen one at a time for 2 s with a 400 ms ISI. 
Each run contained 120 sentences in 24 blocks (5:36 minutes).

fMRI experiments
Participants. A total of 14 neurotypical adults (9 female), aged 21 to 31 
(mean, 25.3; s.d., 3), participated for payment between October 2021 
and December 2022. The sample size was based on those used for 

previous fMRI semantic decoding experiments57,58. All participants had 
normal or corrected-to-normal vision and no history of neurological, 
developmental or language impairments. Twelve participants (~86%) 
were right-handed, as determined by self-report and the Edinburgh 
handedness inventory91, and two (~14%) were left-handed. All partici-
pants had a left-lateralized/bilateral language network as determined 
by the examination of the activation maps for the language localizer2. 
All participants were native speakers of English. Each scanning session 
lasted between one and two hours. All participants gave informed 
written consent in accordance with the requirements of MIT’s Com-
mittee on the Use of Humans as Experimental Subjects (protocol num-
ber 2010000243). The participants were compensated for their time 
(US$30 per hour). To err on the conservative side, no participants were 
excluded from the study on the basis of data quality considerations.

Critical fMRI tasks. Sentence-reading task: event-related design. We 
developed a paradigm to collect brain responses to as many individual 
sentences as possible (similar to recent paradigms in visual neurosci-
ence—for example, the Natural Scenes Dataset31). The participants 
passively read each sentence once, in a condition-rich, event-related 
fMRI design (each sentence is effectively a condition). The sentences 
were presented in black font on a light-grey background one at a time 
for 2 s with a 4 s ISI consisting of a fixation cross. Each run contained 50 
unique sentence trials and three 12 s fixation blocks (in the beginning, 
middle (that is, after 25 sentences) and end of each run). Each run lasted 
336 s (5:36 minutes).

The participants were instructed to read attentively and think 
about the sentence’s meaning. To encourage engagement with the 
stimuli, prior to the session, the participants were informed that they 
would be asked to perform a short memory task after the session (out-
side of the scanner).

The first five participants (train participants) were exposed to 
the set of n = 1,000 baseline sentences and therefore completed 20 
experimental runs (across two scanning sessions). The sentences were 
randomly assigned to runs for each participant (that is, the participants 
were exposed to different presentation orders).

The next five participants (evaluation participants) were exposed 
to n = 250 drive and n = 250 suppress sentences interspersed among the 
set of n = 1,000 baseline sentences—a total of n = 1,500 sentences—and 
therefore completed 30 runs of the experiment (across three scanning 
sessions). The n = 1,500 sentences were randomly assigned to experi-
mental runs for each participant while ensuring a balanced distribution 
of baseline, drive and suppress sentences in each run, leading to the 
following distribution of baseline/drive/suppress sentences in the three 
scanning sessions: 333/84/83, 333/83/84 and 334/83/83.

Sentence-reading task: blocked design. To evaluate the robustness 
of brain responses to the drive and suppress sentences, we addition-
ally presented a subset of the drive, suppress and baseline sentence 
materials in a traditional blocked design.

The sentences were grouped into blocks of five sentences from 
the same condition (baseline, drive or suppress) and were presented 
on the screen (in black font on a light-grey background) one at a time 
for 2 s with a 400 ms ISI consisting of a fixation cross (for a total block 
duration of 12 s). Each run consisted of 24 blocks with 8 blocks (40 
sentences) per condition. There were five 12 s fixation blocks: in the 
beginning and end of each run, as well as after 6, 12 and 18 blocks. Each 
run lasted 348 s (5:48 minutes).

As in the event-related experiment, the participants were 
instructed to read attentively and think about the sentence’s meaning. 
Prior to the session, the participants were informed that they would 
be asked to perform a short memory task after the session (outside 
of the scanner).

The participants for the blocked experiment were exposed to a 
total of 720 unique sentences (from the baseline, drive and suppress 
conditions; 240 per condition) across six runs in a single scanning 

http://www.nature.com/nathumbehav
https://huggingface.co/gpt2-xl


Nature Human Behaviour | Volume 8 | March 2024 | 544–561 556

Article https://doi.org/10.1038/s41562-023-01783-7

session. These sentences were sampled randomly without replacement 
from the full set of materials (consisting of 250 drive, 250 suppress and 
1,000 baseline stimuli from the search approach). The sentences were 
randomly sampled and assigned to runs for each participant (that is, the 
participants were exposed to different presentation orders of different 
subsets of the materials). The condition order was counterbalanced 
across runs and participants.

Memory task for the sentence-reading task. For both the 
event-related and blocked critical sentence-reading experiments, 
the participants completed a memory task at the end of each scanning 
session (outside of the scanner) to incentivize attention throughout 
the session. The participants were informed ahead of time that they 
would be asked to perform a memory task after the scanning session.

The participants were presented with a set of sentences, one at 
a time, and asked to decide whether they had read it during the scan-
ning session. For both the event-related and blocked experiments, the 
memory task consisted of 30 sentences: 20 sentences from the set used 
in the scanning session and 10 foil sentences. For the event-related 
experiment, the 20 correct targets were randomly sampled without 
replacement from each of the 10 runs in that session, 2 from each run. 
For the blocked experiment, the 20 correct targets were randomly 
sampled without replacement from each of the 6 runs in that session, 
3 from each run, with an additional 2 sentences from random runs.

The 10 foil sentences were randomly sampled without replacement 
from a set of 100 sentences. These 100 foil sentences were manually 
selected from the same corpora that were used to construct the base-
line stimulus set (15 sentences from each of the three genres from the 
Toronto Book Corpus—45 in total—and 55 sentences from the additional 
eight corpora; Supplementary Information section 1).

The average accuracy (the sum of correct responses divided by 
the total number of responses; chance level is 50%) was 70.4% (s.d. 
across sessions, 11.4%) for the event-related participants (n = 24 ses-
sions—responses for one session were not saved due to an error in the 
script) and 61.7% (s.d. across sessions, 10%) for the blocked participants 
(n = 4 sessions).

fMRI data acquisition, preprocessing and first-level analysis. fMRI 
data acquisition. Structural and functional data were collected on the 
whole-body 3 Tesla Siemens Prisma scanner with 32-channel head coil, 
at the Athinoula A. Martinos Imaging Center at the McGovern Institute 
for Brain Research at MIT. T1-weighted, magnetization prepared rapid 
gradient echo (MP-RAGE) structural images were collected in 176 sag-
ittal slices with 1 mm isotropic voxels (repetition time (TR): 2,530 ms; 
echo time (TE): 3.48 ms; inversion time (TI): 1,100 ms; flip, 8 degrees). 
Functional BOLD data were acquired using an SMS EPI sequence 
(with a 90-degree flip angle and using a slice acceleration factor of 2), 
with the following acquisition parameters: 52 2-mm-thick near-axial 
slices acquired in the interleaved order (with 10% distance factor), 
2 mm × 2 mm in-plane resolution, a field of view in the phase-encoding 
(A ≫ P) direction of 208 mm and a matrix size of 104 × 104, a TR of 
2,000 ms and a TE of 30 ms, and a partial Fourier of 7/8. The first 10 s 
of each run were excluded to allow for steady-state magnetization.

fMRI preprocessing. The fMRI data were preprocessed using SPM12 
(release 7487), the CONN EvLab module (release 19b) and custom 
MATLAB scripts. Each participant’s functional and structural data 
were converted from DICOM to NIfTI format. All functional scans were 
coregistered and resampled using B-spline interpolation to the first 
scan of the first session. Potential outlier scans were identified from 
the resulting subject-motion estimates as well as from BOLD signal 
indicators using the default thresholds in the CONN preprocessing 
pipeline (five standard deviations above the mean in global BOLD sig-
nal change, or framewise displacement values above 0.9 mm)92. Note 
that the identification of outlier scans was leveraged in the blocked 
first-level modelling but not in the data-driven event-related first-level 

modelling. Functional and structural data were independently normal-
ized into a common space (the MNI template; IXI549Space) using the 
SPM12 unified segmentation and normalization procedure93 with a 
reference functional image computed as the mean functional data after 
realignment across all time points omitting outlier scans. The output 
data were resampled to a common bounding box between MNI-space 
coordinates (−90, −126, −72) and (90, 90, 108), using 2 mm isotropic 
voxels and fourth-order spline interpolation for the functional data, 
and 1 mm isotropic voxels and trilinear interpolation for the structural 
data. Last, the functional data were smoothed spatially using spatial 
convolution with a 4 mm full width at half maximum (FWHM) Gauss-
ian kernel.

First-level modelling of event-related experiments. The critical, 
event-related experiment was analysed using GLMsingle30, a frame-
work for obtaining accurate response estimates in quick event-related 
single-trial fMRI designs. Modelling such responses is challenging 
due to temporal signal autocorrelation, participant head motion and 
scanner instabilities. The GLMsingle framework introduces three main 
steps to combat noise in a data-driven manner. The first is the choice of 
haemodynamic response function (HRF) to convolve with the design 
matrix: an HRF is identified from a library of 20 candidate functions 
(derived from independent fMRI data31) as the best fitting for each 
voxel separately. The second step is noise regressors: a set of voxels 
that are unrelated to the experimental paradigm are identified, and 
these voxels’ time courses are used to derive an optimal set of noise 
regressors by performing principal component analysis. The third 
step is the regularization of voxel responses: instead of an ordinary 
least-squares regression, GLMsingle uses fractional ridge regression94 
to model voxel responses to dampen the noise inflation in a standard 
ordinary least-squares regression due to correlated predictors from 
rapid, successive trials.

Using this framework, a general linear model (GLM) was used to 
estimate the beta weights that represent the BOLD response ampli-
tude evoked by each individual sentence trial (fixation was modelled 
implicitly, such that all time points that did not correspond to one 
of the conditions (sentences) were assumed to correspond to a fixa-
tion period). The data from different scanning sessions for a given 
participant were analysed together. The ‘sessionindicator’ option in 
GLMsingle was used to specify how different input runs were grouped 
into sessions. For each voxel, the HRF that provided the best fit to the 
data was identified (on the basis of the amount of variance explained). 
The data were modelled using a fixed number of noise regressors (five) 
and a fixed ridge regression fraction (0.05) (these parameters were 
determined empirically using an extensive joint data modelling and 
data evaluation framework; Supplementary Information section 3).

By default, GLMsingle returns beta weights in units of percent 
signal change by dividing by the mean signal intensity observed at 
each voxel and multiplying by 100. Hence, the beta weight for each 
voxel can be interpreted as a change in BOLD signal for a given sentence 
trial relative to the fixation baseline. To mitigate the effect of collecting 
data across multiple scanning sessions, the beta values were z-scored 
session-wise per voxel (‘Definition of ROIs’).

First-level modelling of blocked experiments. The blocked experi-
ments were analysed using standard analysis procedures using SPM12 
(release 7487) and the CONN EvLab module (release 19b). Effects were 
estimated using a GLM in which the beta weight associated with each 
experimental condition was modelled with a boxcar function con-
volved with the canonical HRF (fixation was modelled implicitly, such 
that all time points that did not correspond to one of the conditions 
were assumed to correspond to a fixation period). Temporal autocor-
relations in the BOLD signal time series were accounted for by a com-
bination of high-pass filtering with a 128-second cutoff and whitening 
using an AR(0.2) model (a first-order autoregressive model linearized 
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around the coefficient a = 0.2) to approximate the observed covariance 
of the functional data in the context of restricted maximum likelihood 
estimation. In addition to experimental condition effects, the GLM 
design included first-order temporal derivatives for each condition (to 
model variability in the HRF delays), as well as nuisance regressors to 
control for the effects of slow linear drifts, subject-motion parameters 
and potential outlier scans on the BOLD signal.

Definition of ROIs
Language ROIs. Language ROIs were defined in individual partici-
pants using functional localization2,38. This approach is crucial because 
many functional regions do not exhibit a consistent mapping onto 
macro-anatomical landmarks95, and this variability is problematic when 
functionally distinct regions lie close to each other, as is the case with 
both frontal and temporal language areas (see ref. 9 for a discussion 
of this issue for ‘Broca’s area’).

For each participant, fROIs were defined by combining two 
sources of information2: (1) the participant’s activation map for the 
localizer contrast of interest (t-map) and (2) group-level constraints 
(‘parcels’) that delineated the expected gross locations of activations 
for the relevant contrast and were sufficiently large to encompass the 
extent of variability in the locations of individual activations (all par-
cels are available for download from https://evlab.mit.edu/funcloc/ 
download-parcels).

Language network localizer task. The task used to localize the lan-
guage network was a reading task contrasting sentences (for example, 
‘THE SPEECH THAT THE POLITICIAN PREPARED WAS TOO LONG FOR 
THE MEETING’) and lists of unconnected, pronounceable non-words 
(for example, ‘LAS TUPING CUSARISTS FICK PRELL PRONT CRE POME 
VILLPA OLP WORNETIST CHO’) in a standard blocked design with a 
counterbalanced condition order across runs (introduced in Fedorenko 
et al.2). The sentences > non-words contrast targets higher-level aspects 
of language, including lexical and phrasal semantics, morphosyntax, 
and sentence-level pragmatic processing, to the exclusion of percep-
tual (speech- or reading-related) processes. The areas identified by 
this contrast are strongly selective for language relative to diverse 
non-linguistic tasks (for example, ref. 26; see Fedorenko and Blank9 
for a review). This paradigm has been extensively validated and shown 
to be robust to variation in the materials, modality of presentation, 
language and task (for example, refs. 2,8). Furthermore, a network that 
corresponds closely to the localizer contrast emerges robustly from 
whole-brain task-free data—voxel fluctuations during rest39.

Each stimulus consisted of 12 words/non-words. The stimuli were 
presented in the centre of the screen, one word/non-word at a time, at 
the rate of 450 ms per word/non-word. Each stimulus was preceded 
by a 100 ms blank screen and followed by a 400 ms screen showing 
a picture of a finger pressing a button, and then a blank screen for 
another 100 ms, for a total trial duration of 6 s. Experimental blocks 
lasted 18 s (with three trials per block), and fixation blocks lasted 14 s. 
Each run (consisting of 5 fixation blocks and 16 experimental blocks) 
lasted 358 s. The participants completed two runs. The participants 
were instructed to read attentively (silently) and press a button on 
the button box whenever they saw the picture of a finger pressing a 
button on the screen. The button-pressing task was included to help 
the participants remain alert.

The materials and scripts are available from the Fedorenko Lab 
website (https://evlab.mit.edu/funcloc).

Language network fROIs. The language fROIs were defined using the 
sentences > non-words contrast from the language localizer collected 
in each participant’s first scanning session (see, for example, Mahowald 
and Fedorenko96, for evidence that localizer maps are highly stable 
within individuals over time, including across sessions). This contrast 
targets higher-level aspects of language, to the exclusion of perceptual 

(speech/reading) and motor–articulatory processes (for a discussion, 
see Fedorenko and Thompson-Schill3).

To define the language fROIs, each individual sen-
tences > non-words t-map was intersected with a set of ten binary 
parcels (five in each hemisphere). These parcels were derived from a 
probabilistic activation overlap map using watershed parcellation, as 
described by Fedorenko et al.2, for the sentences > non-words contrast 
in 220 independent participants and covered extensive portions of the 
lateral frontal, temporal and parietal cortices. Specifically, five language 
fROIs were defined in the dominant hemisphere: three on the lateral 
surface of the frontal cortex (in the inferior frontal gyrus, IFG, and its 
orbital part, IFGorb, as well as in the middle frontal gyrus, MFG) and two 
on the lateral surface of the temporal and parietal cortex (in the anterior 
temporal cortex, AntTemp, and posterior temporal cortex, PostTemp). 
Following prior work (for example, ref. 27), to define the RH fROIs, the LH 
language parcels were transposed onto the RH, allowing the LH and RH 
homotopic fROIs to differ in their precise locations within the parcels.

Within each of these ten parcels, the 10% of voxels with the high-
est t values for the sentences > non-words contrast were selected (see 
Supplementary Information section 15e for the number of voxels in 
each fROI).

Control ROIs. In addition to language regions, we examined two 
large-scale brain networks linked to high-level cognitive process-
ing—the MD network32 and the DMN33—which, similar to the language 
regions, were functionally defined using independent localizer tasks 
in each participant. We also examined a set of anatomical parcels34 in 
an effort to cover the entire cortex (see Supplementary Information 
section 15 for the details).

Aggregation of voxels within each ROI. The voxels belonging to each 
fROI (language, MD and DMN) and each anatomical Glasser ROI were 
aggregated by averaging. For the fMRI data reported in the main text, 
each voxel was z-scored session-wise prior to averaging, to minimize 
potential non-stationarities that exist across different scanning ses-
sions and to equalize response units across voxels. In Supplementary 
Information sections 12 and 14, we report fMRI data without any nor-
malization (the key patterns of the results are not affected).

On average, we extracted responses from 10 language fROIs 
(s.d. = 0), 19.43 MD fROIs (s.d. = 1.28), 12 DMN fROIs (s.d. = 0) and 353.71 
anatomical Glasser parcels (s.d. = 10.34) across n = 14 participants (5 
train participants, 5 evaluation participants in the event-related fMRI 
design from the search and modify approaches, and 4 evaluation par-
ticipants in the blocked fMRI design). In a few cases, (f)ROIs could not 
be extracted due to a negative t statistic for the contrast of interest or 
lack of coverage in our functional acquisition sequence.

Sentence properties that modulate brain responses
General approach. To shed light on what property or properties make 
some sentences elicit stronger responses in the language network, 
we collected an extensive set of norms to characterize the full set of 
sentences in this study (n = 2,000: 1,000 baseline sentences, 250 drive 
and 250 suppress sentences from the search approach, and 250 drive 
and 250 suppress sentences from the exploratory modify approach) 
(Fig. 6c) and examined the relationship between these properties 
and fMRI responses. First, building on the body of evidence for sur-
prisal modulating language processing difficulty (in both behavioural 
psycholinguistic work40–42 and brain imaging investigations43–47), we 
computed the average log probability for each sentence using GPT2-XL 
(surprisal is the negative log probability; Surprisal features). Second, 
we collected ten behavioural rating norms across a total of n = 3,600 
participants (on average, 15.23 participants per sentence per rating 
norm; minimum, 10; maximum, 19). The norms spanned five broad 
categories and were all motivated by prior work in linguistics and 
psycholinguistics (‘Behavioural norms’).
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Surprisal features. We estimated the log probability of a word given 
its context for the words in each sentence. The negative log probability 
of a word/sentence is known as ‘surprisal’97. The log probability of each 
sentence was computed using the pre-trained unidirectional-attention 
language model GPT2-XL14 from the HuggingFace library90 (transform-
ers v.4.11.3). GPT2-XL was trained on 40 GB of web text from various 
domains (WebText dataset). Each sentence was tokenized using the 
model’s standard tokenizer (GPT2Tokenizer) and the special token, 
[EOS], was prepended to each sentence. Punctuation was retained. 
We obtained the sentence-level surprisal by taking the mean of the 
token-level surprisals.

For supplementary analyses, we obtained surprisal estimates from 
an n-gram model and a probabilistic context-free grammar model in 
addition to GPT2-XL (Supplementary Information section 20).

Behavioural norms. Participants. Participants were recruited using 
crowd-sourcing platforms: Prolific (n = 8 surveys) and Amazon Mechan-
ical Turk (n = 1 survey). For Prolific, the study was restricted to workers 
with English as their first language and their most fluent language, 
USA as their location and a submission approval rate greater than or 
equal to 90%. For Amazon Mechanical Turk, the study was restricted 
to ‘Mechanical Turk Masters’ workers. A total of 3,600 participants 
took part in the experiment across the nine surveys (400 participants 
for each survey; see Supplementary Information section 22c for the 
details). After we applied pre-defined exclusion criteria, 2,741 par-
ticipants remained (Supplementary Information section 22a). The 
experiments were conducted with approval from and in accordance 
with MIT’s Committee on the Use of Humans as Experimental Subjects 
(protocol number 2010000243). The participants gave informed con-
sent before starting each experiment and were compensated for their 
time (minimum US$12 per hour).

Materials, design and procedure. The n = 2,000 sentences were ran-
domly assigned to 20 unique sets containing 100 sentences each. For 
each survey, the participants first provided informed consent. They 
then answered several demographic questions (whether English is their 
first language, which country they are from and what age bracket they 
fall into); they were explicitly told that payment was not contingent 
on their answers to these questions. Finally, they were presented with 
the survey-specific instructions and the following warning: ‘There are 
some sentences for which we expect everyone to answer in a particular 
way. If you do not speak English or do not understand the instructions, 
please do not do this hit—you will not get paid.’

One survey targeted two core aspects of sentences: grammati-
cal well-formedness (how much does the sentence obey the rules of 
English grammar?) (for details of the instructions, see Supplementary 
Information section 22c) and plausibility (how much sense does the 
sentence make?). Three surveys probed different aspects of the sen-
tence’s content: how much does the sentence make you think about 
(1) others’ mental states, (2) physical objects and their interactions, 
and (3) places and environments? The latter two have to do with the 
physical world, and the former, with internal representations; the 
physical-versus-social distinction is one plausible organizing dimen-
sion of meaning59,60. Two surveys probed emotional dimensions of 
the sentences: valence (how positive is the sentence’s content?) and 
arousal (how exciting is the sentence’s content?). One survey targeted 
visual imagery (how visualizable is the sentence’s content?). Finally, 
the last two surveys probed people’s perception of how common the 
sentence is, in general versus in conversational contexts. The first 
survey (with two questions per sentence) took 25.01 minutes on aver-
age; the remaining surveys took 14.25 minutes on average. After the 
participants answered the rating question(s) for the 100 sentences 
(the order was randomized separately for each participant), they were 
asked to complete six sentence preambles (for example, ‘When I was 
younger, I would often…’; see Supplementary Information section 

22b for the full set), which were used post hoc to evaluate English pro-
ficiency. See Supplementary Information section 22 for the details on 
the experimental procedures.

Statistical analyses
LME models (implemented using the lmer function from the R package 
lme4 (ref. 98) v.1.1–31) were used to evaluate the statistical significance 
of the differences in the BOLD response among the sentence conditions 
(baseline, drive and suppress) and of the effect of sentence properties on 
the BOLD response. The critical variable of interest (either condition or 
sentence property) was modelled as a fixed effect. As additional effects, 
we modelled other variables that could modulate the BOLD response but 
that were not our critical variables of interest, including item (sentence), 
run order within a session (1–10) and sentence order within a run (1–50):

BOLD response ∼ variable of interest + (1|sentence)+

runwithin session + trialwithin run.

(Note that because the BOLD responses were z-scored session-wise, 
there was no additional variance to explain by including session number 
or participant as a model term.)

The models were fitted using maximum likelihood estimation and 
used the Satterthwaite method for estimating degrees of freedom. For 
each LME model reported, we provide (in Supplementary Information 
sections 18 and 23) a table with model formulae, effect size estimates, 
standard error estimates, t statistics, P values, degrees of freedom and R2 
values. We evaluated the statistical significance of differences between 
pairs of conditions using estimated marginal means (implemented 
using the emmeans function from the R package emmeans99 v.1.8.4-1) 
using Tukey’s multiple comparison method. Finally, we evaluated the 
statistical significance of differences between pairs of LME models using 
likelihood ratio tests using the chi-squared value, χ2, as the test statistic 
(implemented using the anova function from the R package lme4).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The data are publicly available and can be downloaded via the following 
repository: https://github.com/gretatuckute/drive_suppress_brains.

Code availability
The code is publicly available in the following repository: https:// 
github.com/gretatuckute/drive_suppress_brains.
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Study description The study contains fMRI neuroimaging data and behavioral data. Data were quantitative.

Research sample Participants were from MIT and the surrounding Cambridge/Boston, MA community. Participants were native English speakers. 

Sampling strategy The sample size was based on those used for previous fMRI semantic decoding experiments (Huth et al., 2016; Pereira et al., 2018). 

Data collection Neuroimaging data were collected at the Athinoula A. Martinos Imaging Center at the McGovern Institute for Brain Research at MIT. 

Behavioral data were collected using the Prolific and Amazon Mechanical Turk crowd-sourcing platforms.
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Data exclusions For neuroimaging data, no participants were excluded from the study based on data quality considerations. 

For behavioral data, participants were excluded based on the following pre-defined criteria: 

1. Native speaker status: Participants were excluded based on their native speaker status self report as well as the Prolific/mTurk 

language and location filters. 
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(that were not obvious typos) or if the completions were deeply nonsensical.  

3. Average response time: Participants were excluded if the average response time per question was less than 3 seconds (i.e., for the 

survey that contained two questions, the threshold was 6 seconds).  

4. Lack of variance in ratings: Participants were excluded if they only used a total of 2 unique rating values (out of 7) for all items in 

the survey. In addition, for the 2-question “form and meaning” survey, participants were excluded if they always provided the same 

rating for two questions across all items. 
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5. Correlation with other participants: Participants were excluded if the average Pearson correlation with the ratings of remaining 

participants fell below 2 standard deviations below the mean inter-participant correlation. The inter-participant correlated was 

computed by correlating a vector of responses for a given participant with the vector of responses for each of the remaining 

participants and taking the average of these pairwise correlation values. 

Non-participation No participants dropped out.

Randomization Participants were not allocated to experimental groups. There was no randomization procedure for participant selection or 

enrollment.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Magnetic resonance imaging

Experimental design

Design type Localizer experiments were blocked.  

The critical experiment consisted of both an event-related design and a blocked design. n=10 participants took part in 

the event-related experiment (5 participants completed two sessions each, and 5 participants completed 3 sessions 

each). n=4 participants took part in the blocked experiment (one session each).

Design specifications For the language localizer task: Blocked design with a counterbalanced condition order across runs. Each stimulus 

consisted of 12 words/nonwords. Stimuli were presented in the center of the screen, one word/nonword at a time, at 

the rate of 450ms per word/nonword. Each stimulus was preceded by a 100ms blank screen and followed by a 400ms 

screen showing a picture of a finger pressing a button, and a blank screen for another 100ms, for a total trial duration of 

6s. Experimental blocks lasted 18s (with 3 trials per block), and fixation blocks lasted 14s. Each run (consisting of 5 

fixation blocks and 16 experimental blocks) lasted 358s. Participants completed 2 runs. 

For the multiple demand localizer task: MD localizer task: Blocked design with a counterbalanced condition order across 

runs. The runs consisted of easy and hard arithmetic conditions. The arithmetic task (numbers) were presented in the 

center of the screen for 1,450ms, followed by the response choices presented for 1,450ms and an inter-stimulus 

interval of 100ms. Experimental blocks lasted 15 s (with 5 trials per block), and fixation blocks lasted 15s. Each run 

consisted of 16 experimental blocks—8 blocks per condition—and 5 fixation blocks; a fixation block appeared at the 

beginning of the run and after each set of four experimental blocks, and lasted 315s. Participants completed 2 runs. 

For the critical event-related experiment: Participants passively read each sentence once, in a condition-rich, event-

related fMRI design (each sentence is effectively a condition). Sentences were presented (in black font) on a light grey 

background one at a time for 2s with a 4s inter-stimulus interval (ISI) consisting of a fixation cross. Each run contained 

50 unique sentence trials and three 12s fixation blocks (in the beginning, middle (i.e., after 25 sentences) and end of 

each run). Each run lasted 336s (5:36 minutes). Participants completed either a total of 20 runs (n=5 participants across 

two sessions) or 30 runs (n=5 participants across three sessions). 

For the critical blocked experiment: Sentences were grouped into blocks of 5 sentences from the same condition 

(baseline, drive, suppress) and were presented on the screen (in black font on a light grey background) one at a time for 

2s with a 400ms ISI consisting of a fixation cross (for a total block duration of 12s). Each run consisted of 24 blocks with 

8 blocks (40 sentences) per condition. There were five 12s fixation blocks: in the beginning and end of each run, as well 

as after 6, 12, and 18 blocks. Each run lasted 348s (5:48 minutes). Participants (n=4) completed a total of six runs. 

Behavioral performance measures Button press in the language localizer task. Forced-choice in the multiple demand localizer task. Behavioral performance 

measures were not analyzed for the localizers.  

For the critical experiment, no task was performed during data acquisition. However, participants completed a memory 

task at the end of each scanning session (outside of the scanner) to incentivize attention throughout the session. 

Participants were informed ahead of time that they would be asked to perform a memory task after the scanning 

session. Behavioral responses were analyzed: The average accuracy (sum of correct responses divided by total number 

of responses was 70.4% (SD across sessions: 11.4%) for the event-related participants (n=24 sessions – responses for 
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one session were not saved due to an error in the script), and 61.7% (SD across sessions: 10%) for the blocked 

participants (n=4 sessions).

Acquisition

Imaging type(s) Structural and functional.

Field strength 3T.

Sequence & imaging parameters T1-weighted, Magnetization Prepared RApid Gradient Echo (MP-RAGE) structural images were collected in 176 sagittal 

slices with 1 mm isotropic voxels (TR = 2,530 ms, TE = 3.48 ms, TI = 1100 ms, flip = 8 degrees).  

Functional, blood oxygenation level dependent (BOLD), data were acquired using an SMS EPI sequence (with a 90 

degree flip angle and using a slice acceleration factor of 2), with the following acquisition parameters: fifty-two 2 mm 

thick near-axial slices acquired in the interleaved order (with 10% distance factor) 2 mm × 2 mm in-plane resolution, 

FoV in the phase encoding (A ≫ P) direction 208 mm and matrix size 104 × 104, TR = 2,000 ms and TE = 30 ms, and 

partial Fourier of 7/8. The first 10 s of each run were excluded to allow for steady state magnetization.

Area of acquisition Whole brain.

Diffusion MRI Used Not used

Preprocessing

Preprocessing software SPM12 and custom MATLAB scripts.

Normalization All functional scans were coregistered and resampled using B-spline interpolation to the first scan of the first session. 

Normalization template SPM12 default Montreal Neurological Institute (MNI) template.

Noise and artifact removal For the blocked experiments, data were high-pass filtered at 128s. 

For the event-related experiments, the data-driven analysis method GLMdenoise and the statistical technique of ridge 

regression were used. These methods can account for a variety of sources of noise (e.g., physiological, motion, scanner 

artifacts, effects of collinearity). 

Volume censoring For the blocked experiments, time points classified as outliers based on the motion data each had a regressor included in the 

GLM but were not removed (outliers were identified from the resulting subject-motion estimates as well as from BOLD signal 

indicators using default thresholds in CONN preprocessing pipeline: 5 standard deviations above the mean in global BOLD 

signal change, or framewise displacement values above 0.9 mm; Nieto-Castanon, 2020). 

For the event-related experiment, no volume censoring was performed.

Statistical modeling & inference

Model type and settings Single-trial BOLD response amplitudes were estimated for individual voxels in individual participants. Voxels were aggregated 

by averaging across voxels in pre-defined regions of interest (see "Anatomical location(s)" below). Univariate and predictive 

(encoding model) analyses were performed on these ROI-level responses.

Effect(s) tested Main effects were estimated using LME models with the following formulae: 

BOLD response ~ variable_of_interest + (1 | sentence) + run_within_session + trial_within_run 

Where "variable_of_interest" is either the condition (drive, suppress, baseline) or the behavioral sentence property of 

interest.

Specify type of analysis: Whole brain ROI-based Both

Anatomical location(s)

Functionally-located language regions were the primary brain ROIs. These were defined as follows: Each 

individual map for the sentences > nonwords contrast from the language localizer was intersected with a 

set of 10 binary parcels (both hemispheres) derived from a probabilistic activation overlap map for the 

same contrast in a large set of participants (n=220) using watershed parcellation (an approach developed 

in Fedorenko et al., 2010). 

For supplementary analyses, we further defined ROIs based on the multiple demand localizer, also 

intersected with a set of binary parcels derived using the approach described in Fedorenko et al., 2010. 

Finally, in an attempt to cover a large part of the cortex, we obtained ROIs from the Glasser parcellation 

(Glasser et al., 2016). 

Statistic type for inference

(See Eklund et al. 2016)

The Eklund paper concerns traditional group-level random effect analyses, in the current paper all the analyses are 

performed within individuals and then the extracted responses are analyzed with linear mixed effects models and correlation 

measures.

Correction Not applicable, as voxel-wise statistical significance inferences are not included in this paper.
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Models & analysis

n/a Involved in the study

Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis

Multivariate modeling and predictive analysis For the encoding model analyses, we mapped from language model representations to brain responses using 

a ridge regression mapping model (L2 regularized). The regularization parameter was estimated using leave-

one-out cross-validation implemented using the scikit-learn Python library function RidgeCV (Pedregosa et 

al., 2011; version 0.24.2). No dimensionality reduction was performed. 
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