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Sections related to encoding model development  

SI 1: Experimental materials: Baseline sentences  
We selected a large sample (n=1,000) of naturally occurring sentences in order to probe brain 
responses to diverse linguistic stimuli. (Note that although not every stimulus constituted a 
sentence by some definitions, we use the term ‘sentence’ throughout for convenience.) As 
detailed below, this set consists of two subsets: the first subset (n=534 sentences) was selected 
to maximize semantic diversity, and the second subset (n=466 sentences) was selected via 
random sampling across diverse genres and styles. Across the two subsets, sentences were 
drawn from nine corpora. All corpora were filtered to only include 6-word sentences with only 
printable ASCII characters and had a letter as the first character. We chose to use sentences of 
fixed length because longer connected linguistic strings elicit higher magnitude of response in 
the language areas 1. And we chose the length of 6 words because a) we wanted to maximize 
the number of sentences that could be presented, and a larger number is feasible with shorter 
stimuli; b) the temporal receptive window (e.g., 2,3) of the language system appears to be ~6 
words (e.g., 4,1,5). 
The corpora were preprocessed to remove repeated/leading/trailing whitespace, strip 
whitespace before common punctuation characters (?.!,:;), append a final period if the last 
sentence character was not a punctuation character, and uppercase the first letter.  
 
Subset 1: Maximizing semantic diversity 
To select a semantically diverse set of sentences, we made use of the 180 semantic clusters 
identified by Pereira et al. 6 (publicly available at https://osf.io/crwz7/wiki/home). These clusters 
were derived by performing spectral clustering 7 on GloVe co-occurrence vectors 8 for n=29,805 
English words 9 and spanned diverse semantic categories, including some that corresponded to 
classic concrete concept categories (like ‘body’ or ‘food’) and others that were more abstract 
(like ‘soul’ or ‘argument’).  
To select the sentences for this subset, we used a large collection of amateur fiction (The 
Toronto Book Corpus 10) from three genres: Adventure (n=62,661 sentences after filtering, as 
described above), Fantasy (n=488,841 sentences), and Mystery (n=177,523 sentences). 
 
For each of the 180 clusters, we took the cluster target word (a word manually assigned as a 
descriptive label for each cluster in Pereira et al. 6) and 20 most frequent cluster member words 
and computed their average GloVe (840B) embedding (either 20 or 21 unique words per cluster, 
depending on whether the cluster target word belonged to the 20 most frequent cluster member 
words). GloVe embeddings were available for all 3,769 unique cluster words (169 clusters x 21 
words each + 11 clusters x 20 words). For each sentence from each of the three corpora 
(Toronto Adventure, Toronto Fantasy, Toronto Mystery), we computed the average GloVe 
embedding of its content words (nouns, verbs, adjectives and adverbs, as identified using the 
POS tagger from the NLTK Python library 11); for the sentences that contained no content words 
(fewer than 0.02% of all sentences within each corpus), we used all words in the sentence. 
Next, we computed the pairwise cosine distance between each candidate sentence from the 
three corpora and each cluster. For each corpus, we outputted the 20 sentences that were most 
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semantically related to each cluster (i.e., had the smallest Cosine distance to the cluster’s 
average embedding) and manually selected one sentence per corpus per cluster. The manual 
selection process ensured that the sentence is topically related to the target cluster and is not 
inappropriate/offensive. To minimize idiosyncratic biases, sentences from each of the three 
corpora were selected by three different people. For Toronto Adventure and Toronto Mystery, 
no appropriate sentences could be found for two clusters (‘pleasure’ and ‘stupid’), thus yielding 
178 sentences from those two corpora. For Toronto Fantasy, no appropriate sentences could be 
found for two clusters (‘pleasure’ and ‘sexy’), thus yielding 178 sentences from that corpus. 
Thus, we obtained 534 sentences (178 sentences * 3 corpora) to maximize semantic diversity. 
 
Subset 2: Random sampling 
The remaining 466 sentences were randomly sampled from eight diverse corpora that spanned 
three main categories:  
 

1) Published written text: Subset of The Wall Street Journal articles published in 1996 
(n=2,997 sentences; 12), The Brown Corpus (n=1,421 sentences; 11), Subset of The 
Universal Dependencies Corpus (n=1,063 sentences; 
https://universaldependencies.org/), The Contract Corpus (n=264 sentences; legal 
texts from Goźdź-Roszkowski 13 and texts collected by Martinez, Mollica & Gibson 
182), and The Colorado Richly Annotated Full-Text (CRAFT) Corpus (n=34 
sentences; biomedical articles from PubMed; 15). 

2)  Web media text: Subset of The Common Crawl C4 Corpus (n=921,099 sentences; 
16). 

3) Transcribed spoken text: The Cornell Movie-Dialogs Corpus (n=41,058 sentences; 
17), and a subset of the spoken component of The Corpus of Contemporary 
American English (COCA) (n=101,193 sentences; 18). 

 
The total number of sentences across these eight corpora was 1,069,129. Given that the 
corpora varied substantially in size (between 34 and 921,099), we implemented a stratified 
sampling scheme to ensure that sentences were sampled from all eight corpora. Specifically, for 
corpora with fewer than 0.025% of all sentences (two corpora: The Contract Corpus and The 
CRAFT Corpus), we sampled 5 sentences from each. For corpora with 0.1-0.3% of all 
sentences (three corpora: The Wall Street Journal Corpus, The Brown Corpus, The Universal 
Dependencies Corpus), we sampled 50 sentences each. For corpora with 3.8-9.5% of all 
sentences (two corpora: The Cornell Movie-Dialogs Corpus and COCA), we sampled 75 
sentences each. This sampling yielded 310 sentences. The remaining 156 sentences were 
sampled from the remaining (largest) corpus (The Common Crawl C4 Corpus) with 86.2% of all 
sentences. Thus, we obtained 466 sentences from diverse corpora that spanned different 
genres (e.g., written vs. spoken language) and styles (e.g., formal vs. conversational language). 
 
After collecting fMRI data from the first participant (unique ID 853; these are numbers in the lab-
internal database and can be cross-referenced with the Fedorenko lab’s studies on OSF), 
several minor edits and replacements were made to the original set of 1,000 sentences. Twenty 
unique sentences were affected: for 8 sentences, we made minor changes to the punctuation, 
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and 12 sentences were replaced (with sentences from the original sentence sources, as 
described above, and according to the manual filtering criteria reported in SI 2). 
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SI 2: Sentence exclusion criteria 
The manual sentence exclusion criteria were defined prior to selection of any materials in the 
study. The automatic exclusion criteria were defined prior to selection of drive and suppress 
sentences. In the following section, the term “token’’ refers to groups of alphanumeric 
characters separated by whitespace. 

Manual exclusion criteria 

- The sentence is inappropriate/offensive (e.g., contains a racial slur or a taboo word). 
- All tokens in the sentence are not English. 
- The sentence contains some type of emoji face, e.g., “:)”. 
- All tokens in the sentence are trademarks, website names, brand names, product 

names, person names, journal identifiers, journal footers, date and geographical 
locations. 

- The sentence contains more or fewer than 6 words due to tokenization/punctuation 
errors. 
 

Additionally, the following three criteria were applied to the baseline materials (n=1,000):  
- The sentence contains several sub-sentences (two sentences in one marked by a 

period, an exclamation point, or a question mark).  
- The sentence has a grammatical error (e.g., agreement error). 
- The sentence has a typo. 

 

Automatic exclusion criteria 

- More than 50% of tokens in the sentence contain numerical characters. 
- More than 50% of all characters in the sentence are uppercase. 
- The sentence contains one or more tokens that are longer than 20 characters. 
- The sentence contains more than 4 consecutive punctuation characters. 
- The sentence contains non-ascii characters (unicode index larger than 127) or a 

character in the following set:  *, @, [, ], \, /, <, >, =, ^, _, `, {, }, |, ~ 
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SI 3: Joint fMRI data modeling and data evaluation framework for robust 
estimation of single-trial fMRI responses  
We developed an experimental paradigm to collect brain responses in an event-related fMRI 
design where each unique trial (i.e., sentence) was presented on the screen one at a time for 2s 
with 4s inter-stimulus interval (SI Figure 3A, Step 1 and Methods; fMRI experiments). Data 
analysis using these rapid, event-related designs is complex due to temporal signal 
autocorrelation, participant head motion, and scanner instabilities 19 and is therefore dependent 
on accurate general linear model (GLM) beta estimates of each trial. To obtain as accurate and 
robust responses as possible, we utilized a state-of-the-art framework for event-related 
modeling, GLMsingle 19. As described in Prince et al. 19, GLMsingle relies on internal cross-
validation to estimate two key modeling hyperparameters (the number of noise regressors and 
the voxel-wise levels of ridge regression regularization). This cross-validation requires at least 
some repeated presentations of the same stimulus in an experiment, the underlying assumption 
being that repetitions of the same stimulus should produce similar neural responses. In the 
current study, we did not want to make this assumption and presented each stimulus only once 
for a given participant (see Discussion in the main text). In order to exploit the denoising 
benefits of GLMsingle, we coupled the GLMsingle framework to a downstream data evaluation 
metric, as described below. 
 
The premise of the proposed procedure is to exploit inter-participant similarity in responses in 
functionally defined brain areas in order to set the two hyperparameters of interest, as illustrated 
in SI Figure 3A. 
 
First, we modeled each of the first 5 participants’ (train participants) fMRI data using different 
GLMs each with a unique combination of the two hyperparameters (number of noise regressors 
and ridge regression regularization fraction) (SI Figure 3A; Step 2, e.g., one GLM instantiation 
may use 5 noise regressors and a regularization fraction of 0.4). Specifically, we ran 126 
different GLM instantiations per participant spanning 1-10 noise regressors and a ridge 
regression fraction of 0.05 to 1. 
 
For each GLM instantiation, we extracted responses from the functionally defined left 
hemisphere language network (SI Figure 3A; Step 3), defined as the top 10% most language-
responsive voxels within pre-defined anatomical parcels using an extensively validated 
language localizer task (Methods; Definition of ROIs). For each participant, we computed the 
arithmetic average of the language-selective voxels in the IFGorb, IFG, MFG, AntTemp, and 
PostTemp fROIs for all sentence trials. Next, we quantified how correlated the sentence-level 
responses were across the 5 participants, yielding a correlation value for each participant pair 
(SI Figure 3A; Step 4). To quantify the overall consistency across participants, we computed 
the median of the pairwise participant correlation values. This procedure was performed for 
each GLM hyperparameter instantiation, resulting in a median inter-participant correlation per 
GLM model instantiation. The highest inter-participant correlation (Pearson r=0.095) was 
obtained using 5 noise regressors and a ridge regularization fraction of 0.05 (SI Figure 3B). 
This GLM hyperparameter combination was thus selected as the GLM data instantiation for use. 
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The 5 participants’ data used for this procedure were fixed using this set of identified modeling 
hyperparameters, and new participants’ data (evaluation participants) were modeled using the 
same set of parameters. The assumption underlying this joint data modeling and evaluation 
framework is that some level of participant-to-participant consistency is expected, particularly for 
functionally defined brain areas 20–23. Hence, any method that demonstrably improves 
participant-to-participant consistency is likely to be a sound denoising method 24. To sum up, the 
coupling of GLM hyperparameters to the downstream inter-participant evaluation metric allows 
for the usage of state-of-the-art single-trial modeling tools 19 with single stimulus repetition 
designs and more generally, foregoing the assumption that the same stimulus should elicit the 
same response across repetitions. 
 

 
SI Figure 3A. Overview of methodological approach for estimation of GLM modeling parameters.  
The figure is explained in the corresponding text. For illustration purposes, the plots do not show real 
data. 
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SI Figure 3B,C. Joint data modeling and evaluation framework successfully maximizes inter-
participant correlation in the functionally-defined LH language network, but not in a control brain 
region (primary auditory).  
Each value in the grids represents the median inter-participant correlation (n=5 participants) across 
n=1,000 sentence trials for different GLM instantiations. Each GLM instantiation used a different 
combination of two GLM modeling hyperparameters: Number of noise regressors (y-axis) and ridge 
regularization fraction (x-axis; ranges from 0 (maximal regularization) to 1 (no regularization, OLS 
solution); 190). There were 126 unique combinations in total. The white parts of the grid were not 
computed given high computational cost for each data point.  
B) Median inter-participant correlations from the functionally defined left hemisphere language network 
(the average of the top 10% language-selective voxels in the IFGorb, IFG, MFG, AntTemp, and 
PostTemp fROIs within pre-defined anatomical parcels, defined using an independent language localizer 
task; Methods; Definition of ROIs). The highest inter-participant correlation (Pearson r = 0.095) was 
obtained using 5 noise regressors and a ridge regularization fraction of 0.05.  
C) Median inter-participant correlations from the anatomically defined left hemisphere primary auditory 
region, included as a control region where there is no expectation about inter-participant correlations (the 
mean of the voxels in the anatomically defined left TE1.1 and TE1.2 regions based on human post-
mortem histology 214). The highest inter-participant correlation (Pearson r=0.01) was obtained using 10 
noise regressors and a ridge regularization fraction of 0.35.  
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SI 4: Correlation across sentences for LH language fROIs 

 
SI Figure 4. LH language regions are highly correlated across both naturalistic and model-
selected sentences.  
A) The Pearson correlation matrix computed over n=1,000 baseline sentences for each of n=5 train 
participants. The first five rows/columns show the five core LH language fROIs (IFGorb, IFG, MFG, 
AntTemp, and PostTemp; Methods; Definition of ROIs). The sixth row/column shows the LH language 
fROI consisting of the average of the voxels from the five fROIs. 
B) Correlation matrices computed over n=1,500 baseline, drive and suppress sentences for each of n=5 
evaluation participants. The first three participants (797, 841, 880) were exposed to drive/suppress 
materials derived from the search approach, while the next two participants (837, 856) were exposed to 
drive/suppress materials derived from the exploratory modify approach (SI 16). 
Note that the participant numbers refer to unique identifiers in the lab internal database and can be cross-
referenced with the Fedorenko lab’s studies on OSF. 
 
  

A)  Correlation across n=1,000 baseline sentences for LH language fROIs (train participants)

B)  Correlation across n=1,500 baseline, drive, and suppress sentences for LH language fROIs (evaluation participants)
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SI 5: Noise ceiling  

SI 5A: Estimation of noise ceiling 
We estimated noise ceilings for the regions of interest (ROIs) in the brain data. We define the 
noise ceiling as the theoretical upper limit for the correlation between an external predictor and 
brain ROI measurements, given the presence of measurement noise. The noise ceiling depends 
solely on the signal-to-noise ratio of the data and is independent of the specific external 
predictor (i.e., LLM model) being evaluated. Given that the primary modeling work in the current 
study was performed on participant-averaged data (specifically, the average of brain data from 
the five train participants), we estimated the noise ceiling for this participant-averaged ROI-level 
data. Our method for estimating the noise ceiling follows the general framework laid out in 
previous studies 27–29 with one core difference: The previous studies make use of the variability 
across repeated presentations of the same trial to estimate the noise ceiling, while in the current 
work we make use of the repeated presentations of the same trial across participants, as 
detailed below. 
 
In the noise ceiling estimation procedure, we make the following four assumptions: 1) the signal 
contained in the ROI’s response is determined solely by the presented sentence, 2) the 
variability of the ROI’s response across different sentences is Gaussian distributed, 3) the noise 
(i.e., variability of the response to a given sentence across participants) is Gaussian distributed 
with zero mean, and 4) the response to a sentence is equal to the signal plus noise. Given 
these assumptions, any observed response for a single subject is a sample from a sum of 
Gaussian distributions: 
 

  (1) 
 
Where 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 indicates the observed BOLD response for a single subject. 𝜇𝜇!"#$%& is the mean 
ROI-level BOLD response signal across different sentences, 𝜎𝜎!"#$%& is the standard deviation of 
the signal across different sentences, and 𝜎𝜎$'"!( is the standard deviation of the noise (across 
participants).  
 
The data used to compute the noise ceiling consists of the ROI responses across 1,000 
sentences (𝑁𝑁! = 1,000) for five participants (𝑁𝑁) = 5). We denote the participant-averaged data 
as 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅%*# (i.e., a column vector). Each sentence was presented once for each participant. 
Note that we treat the ROI-level sentence responses across participants as different ’repetitions’ 
of a given sentence. 
 
The estimation of the noise ceiling proceeds in 3 steps: i) Estimation of the noise standard 
deviation, ii) Estimation of the signal standard deviation, iii) Estimation of signal-to-noise and 
noise ceiling. 
 
i) Estimation of the noise standard deviation 



11 

We first compute the standard deviation of the distribution that characterizes the noise. To do 
so, we start by calculating the variance of the ROI responses across the 𝑁𝑁) presentations of 
each sentence (using the unbiased estimator that normalizes by 𝑁𝑁) − 1 where 𝑁𝑁) is the 
population, i.e., number of participants). We then average this variance across sentences and 
compute the square root of the resulting number. This produces an estimate of the noise 
standard deviation:  
 

(2)  
 
where 𝛽𝛽+, indicates the variance across the ROI responses observed for a given sentence 
across participants. Intuitively, the noise standard deviation (𝜎𝜎$'"!() reflects the noise that is 
contributed by participants. 
 
ii) Estimation of the signal standard deviation 
Second, we compute the standard deviation of the distribution that characterizes the signal. To 
do so, we average the ROI responses across the 𝑁𝑁) presentations of each sentence (i.e., 
across participants, and then calculate the variance across sentences (𝜎𝜎-./0!"#, ) (using the 
unbiased estimator that normalizes by 𝑁𝑁! − 1  where 𝑁𝑁! is the number of sentences). This 
quantifies variance in the data. Then, we subtract the variance that is contributed by noise: 
 

   (3) 
 
where 𝜎𝜎!"#$%& is the signal standard deviation, 𝜎𝜎-./0!"#,  is the variance of the group-averaged 
data, 𝜎𝜎$'"!(,  is the variance of the noise distribution (as computed in Eq. (2)), and ||+ indicates 
positive half-wave rectification. Note that 𝜎𝜎$'"!(,  is divided by the number of participants because 𝜎𝜎$'"!(,  was derived using a population of 𝑁𝑁) participants. 
 
iii) Estimation of signal-to-noise and noise ceiling 
We express the noise and signal standard deviations computed in respectively Eq. (2) and (3) 
as a single scalar noise ceiling (NC) signal-to-noise (SNR) ratio (a value between 0 and 1): 
 

   (4) 
 
We want to express the noise ceiling as the amount of variance contributed by the signal as a 
fraction of the total amount of variance in the data (see the NSD Data Manual for derivation 
https://naturalscenesdataset.org; 29)  
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  (5) 
 
where 𝑁𝑁) indicates the number of participants that are averaged together. The 𝑁𝑁) parameter 
allows to flexibly express the noise ceiling for different levels of participant averaging (e.g., for 
averaging trials across 2, 3, …, 𝑁𝑁)). 
 
Finally, to make the noise ceiling estimate comparable to the encoding model performance 
Pearson correlation scores, we convert this to Pearson correlation units by taking the square 
root: 
 

  (6) 
 
Using this approach, 𝑁𝑁𝑁𝑁0(%1!'$ was estimated to be 0.56 for the LH language network.  
Note that this framework treats response variability that is unrelated to the stimulus and not 
shared across participants as ‘noise’, but such variability might reflect both non-stimulus related 
activity (e.g., head motion, physiological noise) and true neural variability across participants. 
 

SI 5B: Estimation of noise ceiling reliability 
The noise ceiling computed in Section SI 5A is itself an estimate that is dependent on the data 
that was used to compute the noise ceiling (in our case, 𝑁𝑁!= 1,000 sentences across 𝑁𝑁) = 5 
participants). We quantified the reliability of the noise ceiling using a split-half procedure: across 
1,000 iterations, we partitioned the sentences into two independent, random sets of 500 
sentences each and estimated the noise ceiling for each half as described in SI 5A. For each 
iteration, this step yielded two independent noise ceiling estimates. We computed the standard 
deviation across these two noise ceiling estimates (using the unbiased estimator, 𝑁𝑁!)&"2 − 1, 
where 𝑁𝑁!)&"2 = 2) per iteration, leaving us with 1,000 standard deviation values. To obtain a 
standard error estimate, we averaged the 1,000 standard deviation values (by squaring the 
standard deviations, averaging, and transforming back to standard deviations by taking the 
square root). Finally, we divided this average standard deviation by the square root of 𝑁𝑁!)&"2 
(i.e., √2) and used this as a measure of the noise ceiling reliability. 
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SI 6: Cross-validated encoding model performance on held-out sentences  
To obtain an unbiased estimate of encoding model performance, we implemented a 5-fold 
cross-validation procedure using held-out sentences (80%–20% train-test splits; i.e. 800 of the 
1,000 baseline sentences in the train split and 200 sentences in the test split). 
For a given brain region of interest (ROI), we fitted the ridge regression model from the LLM’s 
representations of the training sentences to the ROI’s corresponding brain recordings for those 
sentences (participant-averaged brain data from n=5 train participants). The 𝛼𝛼 regularization 
parameter was identified using leave-one-out cross-validation on the training split. We applied 
the regression model with the identified regularization parameter on LLM representations of the 
held-out 20% of sentences to generate predicted brain responses for those sentences. 
Performance of the model was evaluated by correlating (Pearson r) the predicted ROI response 
with the observed ROI response. If there was no variance in the predicted ROI responses 
across sentences (defined as a standard deviation less than 1e-7 of the predicted ROI 
responses), the Pearson correlation coefficient was set to 0. This process was repeated five 
times, holding out a different 20% of sentences in each fold. For a given ROI, we then took the 
mean of the resulting five Pearson correlation scores to give us a mean predictivity score and 
computed the standard error of the mean over the five cross-validation folds. 
 
We emphasize that the test sentences on which predictions were ultimately evaluated were not 
incorporated into the procedure for selecting the 𝛼𝛼 regularization parameter nor for estimating 
the linear mapping from LLM features to an ROI’s response – i.e., the procedure was fully 
cross-validated. 
 
The following subsections show the cross-validated predictivity performance using different 
sentence representations from GPT2-XL (SI 6A, SI 6B) and from a different language model (a 
bidirectional attention Transformer: BERT-large) (SI 6C). Finally, in SI 6D, we show predictivity 
performance on anatomically defined language regions using GPT2-XL features. 
 
All modeling and analysis code was written in Python (version 3.8.11), making heavy use of the 
numpy (30; version 1.21.2), scipy (31; version 1.7.3), scikit-learn (32; version 0.24.2), pandas (33; 
version 1.4.2) and transformers (34; version 4.11.3) libraries. 
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 SI 6A: GPT2-XL (primary approach: last token representation) 

 
SI Figure 6A. Cross-validated GPT2-XL performance across layers using last-token GPT2-XL 
representations. 
We obtained cross-validated predictivity performance (y-axis) of the encoding model for each layer (i.e., 
Transformer block) of GPT2-XL (x-axis) using the primary sequence summary representation for each 
sentence: last token (Methods; Encoding model development). The error bar shows the standard error of 
the mean across five cross-validation folds (n=200 sentences in each test fold; a total of n=1,000 baseline 
sentences in the cross-validation analysis). The dashed grey line shows the noise ceiling of the LH 
language network with shaded regions showing the noise ceiling reliability (split-half standard error; SI 
5B). The highest prediction performance was obtained using layer 22 (arrow; r = 0.38) and hence features 
from this layer were used as regressors for the encoding model. 
  

A)   Cross-validated GPT2-XL performance across layers
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SI 6B: GPT2-XL (additional approach: average token representation) 

 
SI Figure 6B. Cross-validated GPT2-XL performance across layers using average token GPT2-XL 
representations. 
We tested the robustness of our encoding model by extracting sentence representations from GPT2-XL 
using a different sequence summary method: instead of obtaining the last token representation (SI Figure 
6A), we computed the average of all tokens in each sentence. Identical to SI Figure 6A, we obtained 
cross-validated predictivity performance (y-axis) of the encoding model for each layer. The error bar 
shows the standard error of the mean across five cross-validation folds (n=200 sentences in each test 
fold; a total of n=1,000 baseline sentences in the cross-validation analysis). The dashed grey line shows 
the noise ceiling of the LH language network with shaded regions showing the noise ceiling reliability 
(split-half standard error; SI 5B). The highest prediction performance was obtained using layer 21 (arrow; 
r = 0.36). 
  

B)   Cross-validated GPT2-XL (average token representation)
    performance across layers
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SI 6C: BERT-large   

 
SI Figure 6C. Cross-validated BERT-large performance across layers using two different token 
representations. 
We tested the robustness of our encoding model by extracting sentence representations from a different 
LLM architecture, a bidirectional-attention Transformer model: BERT-large-cased 35 (from two different 
special tokens; respectively panel i and ii). The sentence representations were obtained from the 
pretrained model available via the HuggingFace library (34; transformers version 4.11.3; 
https://huggingface.co/bert-large-cased). BERT-large-cased has 24 layers (i.e., Transformer blocks) in 
addition to the embedding layer. The embedding dimension is 1,024. We obtained model representations 
by tokenizing each sentence using the model’s standard tokenizer (BertTokenizerFast) and passing each 
sentence through the model. We retrieved model representations for each model layer (i.e., at the end of 
each Transformer block). We obtained a sequence summary representation of each sentence using two 
approaches: In panel i, we used the special classification, [CLS], token which is prepended to the 
sequence and is standardly used as a token for classification output 35, and in panel ii, we used the 
special separator token, [SEP], which is appended to the sequence and standardly used to separate input 
35. The highest prediction performance for the [CLS] token method (panel i) was obtained using layer 18 
(arrow; r = 0.37), and the highest prediction performance for the [SEP] token method (panel ii) was 
obtained using layer 10 (arrow; r = 0.36). The error bar shows the standard error of the mean across five 
cross-validation folds (n=200 sentences in each test fold; a total of n=1,000 baseline sentences in the 
cross-validation analysis). The dashed grey line shows the noise ceiling of the LH language network with 
shaded regions showing the noise ceiling reliability (split-half standard error; SI 5B). 
 

C)   Cross-validated BERT-large performance across layers
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ii)   Last token representation ([SEP])
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SI 6D: GPT2-XL (anatomically defined LH language network) 

 
SI Figure 6D. Cross-validated GPT2-XL performance across layers using last-token GPT2-XL 
representations for the anatomically defined language network. 
We tested whether our encoding model (using the primary GPT2-XL last token approach) could predict 
language regions defined anatomically (as opposed to functionally defined in each participant; Methods; 
Definition of ROIs). To define the anatomical language network, we used the Glasser parcellation 36 to 
select a subset of ROIs that approximately correspond to the language network. We identified parcels 
that overlapped by at least 25% of voxels with one of the five anatomical LH language parcels (Methods; 
Definition of ROIs), as was done in Lipkin et al. 37, resulting in n=21 parcels in total for the LH language 
network. Between 2 and 8 Glasser parcels overlapped with each of the five language parcels, as detailed 
below. 
 
Our parcel: corresponding Glasser parcels 
LangIFGorb: 47l, 45 
LangIFG: IFSp, IFJa, 44 
LangMFG: FEF, 55b 
LangAntTemp: TA2, STSva, STSda, STGa, PI, A5 
LangPostTemp: TPOJ2, TPOJ1, STV, STSvp, STSdp, PSL, PHT, pGi 
 
 
The highest prediction performance was obtained using layer 19 (arrow; r = 0.29). The error bar shows 
the standard error of the mean across five cross-validation folds (n=200 sentences in each test fold; a 
total of n=1,000 baseline sentences in the cross-validation analysis). The dashed grey line shows the 
noise ceiling of the anatomical LH language network with shaded regions showing the noise ceiling 
reliability (split-half standard error; SI 5B).  
 
 
  

D)   Cross-validated GPT2-XL performance across layers 
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SI 7: Cross-validated encoding model performance on held-out participants  
To obtain an unbiased estimate of encoding model performance, we implemented a cross-
validation procedure using held-out participants from the set of n=5 train participants (five such 
combinations. For model fitting, we averaged the data from four of the participants and for 
model testing, we left out a different participant each time). 
For the LH language network, we fitted the ridge regression model from the LLM’s 
representations of the n=1,000 baseline sentences to the language network’s corresponding 
brain recordings for those sentences (the average language network’s response across n=4 
participants in the train split). The 𝛼𝛼 regularization parameter was identified using leave-one-out 
cross-validation on the training participants. We used the regression model with the identified 
regularization parameter to generate predicted brain responses for the n=1,000 baseline 
sentences. Performance of the model was evaluated by correlating (Pearson r) the predicted 
language network response with the observed language network response of the held-out 
participant. If there was no variance in the predicted language network responses across 
sentences (defined as a standard deviation less than 1e-7 of the predicted language network 
responses), the Pearson correlation coefficient was set to 0.  
This process was repeated five times, holding out a different participant each time. We then 
took the mean of the resulting five Pearson correlation scores to give us a mean predictivity 
score, and computed the standard error of the mean over the five cross-validation combinations. 
We emphasize that the test stimuli on which predictions were ultimately evaluated were not 
incorporated into the procedure for selecting the 𝛼𝛼 regularization parameter nor for estimating 
the linear mapping from LLM features to the language network’s response – i.e., the procedure 
was fully cross-validated. 
 

 
SI Figure 7. Held-out participant GPT2-XL performance across layers using last-token GPT2-XL 
representations. 
We estimated the predictivity of an encoding model (using the primary GPT2-XL last token approach) 
trained on the average of 4 participants’ brain data, and predicting on a single, held-out participant (within 
the train participants) using the full baseline set (n=1,000 sentences). Colored lines show prediction 
performance on each held-out participant, and the black line shows the mean across participants with 
error bar showing the standard error of the mean across participants.  
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SI 8: Noise ceiling as a function of encoding model performance 
We examined how well GPT2-XL features can explain brain responses relative to the noise 
ceiling in language regions and a set of control brain regions. The control brain regions included 
i) two large-scale brain networks that have been linked to high-level cognitive processing—the 
multiple demand (MD) network 38–42 and the default mode network (DMN) 43–47—which we 
defined using independent functional localizers (see SI 15 for details) and ii) a set of anatomical 
parcels 36 that cover a large fraction of the cortical surface.  
 
The noise ceiling (NC) for a brain region is a measure of stimulus-related response reliability 
and provides an upper bound on the amount of variance that any external predictor can 
theoretically explain. We computed the NC from the brain responses to the 1,000 baseline 
sentences for the n=5 train participants (SI 5).  
We quantified prediction performance by training separate encoding models to predict 
responses in the language regions as well as control brain regions (defined functionally and 
anatomically) using features from GPT2-XL on the participant-averaged data from n=5 train 
participants on the baseline set (as in the main encoding model approach, see Methods; 
Encoding model development). 
 
First, we investigated the NC and prediction performance of language regions versus the two 
functionally defined brain networks (MD and DMN). SI Figure 8A shows the prediction 
performance on held-out sentences plotted against the NC for the functionally defined control 
brain regions across all 49 layers of GPT2-XL. Language regions were most reliable and well-
predicted (red points in the upper right part of the plot). For example, the GPT2-XL features 
explained 67.9% of the variance in the LH language network (layer 22). The MD and DMN 
regions were clustered in the lower left part of the plot, characterized by relatively low NC with 
large uncertainty estimates and low absolute predictivity values.  
 
Next, we investigated the NC and prediction performance of language regions versus a set of 
anatomical parcels 36. SI Figure 8B shows the NC for the anatomical parcels on the surface-
inflated brain. SI Figure 8C shows the prediction performance on held-out sentences plotted 
against the NC for the anatomical parcels across all 49 layers of GPT2-XL. Similar to SI Figure 
8B, most parcels were clustered in the lower left part of the plot with relatively low NC and 
predictivity values. Hence, the language regions were accounted for well by GPT-XL features in 
a spatially specific manner: other brain areas, including those that support high-level cognition, 
were not as reliable or well-predicted as language areas. 
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SI Figure 8. Language regions are reliably well-predicted, better than control brain regions. 
A) The noise ceiling (NC; y-axis), a measure of stimulus-related response reliability, as a function of 
encoding model performance (x-axis) across all functionally defined ROIs in the language network (red), 
multiple demand (MD) network (blue), and the default mode network (DMN; green). The fROIs for which 
the NC reliability did not overlap with zero were included in the analysis (30 fROIs in total; red points: 
language fROIs; blue points: MD fROIs; green points: DMN fROIs). (The NC estimates are plotted in 
Figure 4A in the main text.). Encoding model performance was obtained using 5-fold cross-validation (SI 
6). The error bar on the x-axis shows the standard error of the mean across cross-validation folds. 
Performance for all layers of GPT2-XL is shown (49 layers). The error bar on the y-axis shows the split-
half NC reliability. 
B) We quantified the NC for a set of anatomical parcels that cover the whole brain 36, here illustrated on 
the surface-inflated MNI152 template brain. The color shows the NC with lighter colors indicating higher 
values. Anatomical ROIs where the NC split-half reliability overlapped with zero are not shown (leaving 
189 anatomical ROIs: 100 in LH; 89 in RH). 
C) The NC (y-axis) as a function of encoding model performance (x-axis) for the anatomical ROIs for 
which the NC reliability did not overlap with zero (189 ROIs in total; the NCs for these ROIs are illustrated 
in panel B). Encoding model performance was obtained using 5-fold cross-validation (see SI 6 for details). 
The error bar on the x-axis shows the standard error of the mean across cross-validation folds. 
Performance for all layers of GPT2-XL is shown (49 layers). The error bar on the y-axis shows the noise 
ceiling reliability.  
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Sections related to encoding model evaluation 

SI 9: Experimental materials: Drive and suppress sentences 
The drive and suppress materials were designed to elicit high or low fMRI activity in the 
language network, respectively, based on the predictions from the encoding model (Methods; 
Encoding model evaluation). The drive and suppress materials were selected by searching 
across ~1.8M sentences to identify sentences that are predicted to elicit high or low fMRI 
responses (the search approach). 
In a more exploratory component of the study, we complemented the search approach with 
another approach—the modify approach—where we used gradient-based modifications to 
transform a random sentence into a novel sentence/string predicted to elicit high or low fMRI 
responses (SI 16). 
Using each method, we identified 250 unique drive and 250 unique suppress sentences. These 
500 sentences were interspersed among the 1,000 baseline sentences (SI 1) in the fMRI 
scanning sessions (for a total of n=1,500 unique sentences collected across three scanning 
sessions with 500 unique sentences in each session). This section is focused on the search 
experimental materials, while details on the modify materials can be found in SI 16. 

SI 9A: Identifying candidate materials 
The search approach searches through large-scale corpora of diverse English text to identify 
candidate drive and suppress sentences. Specifically, to identify candidate drive/suppress 
sentences we searched across 1,871,413 6-word sentences (unique sentences: 1,805,623) 
from nine diverse large-scale text corpora. The corpora were partly overlapping with the corpora 
described in SI 1 and were filtered and preprocessed in the same manner as the baseline 
materials. The corpora spanned three main categories (see SI Table 9): 
 

1) Published written text: Subset of The Toronto Book Corpus 10 from three genres: 
Adventure (n=62,661 sentences after filtering, as described above), Fantasy (n=488,841 
sentences), and Mystery (n=177,523 sentences), Subset of The Wall Street Journal 
articles published in 1996 (n=2,997 sentences; 12), The Brown Corpus (n=1,421 
sentences; 11), Subset of The Universal Dependencies Corpus (n=1,063 sentences; 
https://universaldependencies.org/), The Contract Corpus (n=264 sentences; legal texts 
from Goźdź-Roszkowski 13 and texts collected by Martinez, Mollica & Gibson 14), and 
The Colorado Richly Annotated Full-Text (CRAFT) Corpus (n=34 sentences; biomedical 
articles from PubMed; 15). 

2) Web media text: Subset of The Common Crawl C4 Corpus (n=878,552 sentences; 16). 
3) Transcribed spoken text: The Cornell Movie-Dialogs Corpus (n=41,058 sentences; 17), 

and the spoken component of The Corpus of Contemporary American English (COCA) 
(n=216,999 sentences; 18). 

 
We obtained LLM embeddings from GPT2-XL for each sentence in these corpora. Each corpus 
was partitioned into chunks of 5,000 sentences each (or fewer, if a corpus contained fewer than 
5,000 sentences) due to the computational memory load of obtaining LLM embeddings for large 
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numbers of sentences. The corpora were partitioned into a total of 395 chunks. We used our 
encoding model to predict the left hemisphere language network’s response to each sentence in 
each corpus chunk. For each chunk, we stored the 10 sentences that were predicted to elicit the 
highest language network response out of all the sentences in that chunk. Similarly, we stored 
the 10 sentences that were predicted to elicit the lowest language network response. Across the 
395 corpus chunks, we hence obtained 10 sentences * 2 * 395 chunks = 7,900 candidate 
sentences (3,950 drive and 3,950 suppress sentences). 

SI 9B: Selecting the final sets from the candidate materials 
To identify a set of 250/250 drive and suppress sentences (500 total), we followed a five-step 
procedure.  
First, we filtered the sentences according to the automatic exclusion criteria reported in SI 2 (to 
ensure that the candidate sentences did not consist of e.g., exclusively numerical characters or 
contained excessive punctuation). The automatic exclusion criteria excluded 220 sentences out 
of 7,900 (213 for drive, 7 for suppress), leaving us with 7,680 sentences (3,737 for drive, 3,943 
for suppress). Second, we removed duplicate sentences, which excluded 325 additional 
sentences (55 for drive, 270 for suppress), leaving us with 7,355 sentences (3,682 for drive, 
3,673 for suppress). Third, out of these candidate 3,682 drive sentences and 3,673 suppress 
sentences, we selected the drive sentences above the 50th percentile of predicted language 
network response (out of 3,682 drive sentences) and selected the suppress sentences below 
the 50th percentile of predicted language network response (out of 3,673 for suppress 
sentences), effectively filtering out half of our candidate sentences. Hence, for drive sentences 
the percentile exclusion left us with 1,841 sentences (the 50th percentile was 0.497). For 
suppress sentences, the percentile exclusion left us with 1,836 sentences (the 50th percentile 
was -0.341). Fourth, we manually marked sentences for exclusion according to the manual 
exclusion criteria reported in SI 2 (to ensure that the candidate sentences were not e.g., 
inappropriate/offensive or fully in a foreign language). As a result, 838 drive sentences and 0 
suppress sentences were excluded, leaving 1,003 drive candidate sentences and 1,836 
suppress candidate sentences respectively. However, for the suppress candidate sentences, 6 
sentences occurred in the baseline set, and these were excluded, leaving us with 1,830 
suppress candidate sentences. Fifth and finally, to make our sentence selection independent of 
human judgment, we randomly sampled 250 sentences from each set (drive and suppress), 
leaving us with the final set of 500 drive/suppress sentences from the search approach. 
 
Corpus  Number of sentences Contribution (%)  
Total  1,871,413 (unique: 1,805,623)  100%  
Written: Toronto Adventure  62,661  3.35%  
Written: Toronto Fantasy  488,841  26.12%  
Written: Toronto Mystery  177,523  9.49%  
Written: Wall Street Journal   2,997  0.16%  
Written: Brown   1,421  0.08%  
Written: Universal Dependencies  1,063  0.06%  
Written: Contract Corpus 264  0.01%  
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Written: CRAFT 34  0.00%  
Web: Common Crawl C4  878,552  46.95%  
Spoken: Cornell Movie Dialogs  41,058  2.19%  
Spoken: COCA  216,999  11.58%  

SI Table 9. We identified drive and suppress sentences by using our encoding model to generate 
predicted LH language network responses to 1,805,623 unique sentences from diverse, large text 
corpora. The table contains information on corpus name (as well as main category: published written text, 
web media text, or transcribed spoken text), number of sentences, and the percent contribution of the 
total set. 
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SI 10: Breakdown of text sources for drive, suppress, and baseline 
sentences  
To test whether and how sentences differ across the three conditions (drive, suppress, and 
baseline) and from commonly used stimuli sources in past work, we performed two analyses. 
First, we analyzed the distribution of text sources across our three conditions. In general, our 
sentences came from four types of sources: i) written fiction, ii) written miscellaneous, iii) 
spoken, and iv) web. The “Written Fiction” category consists of fiction narratives from the 
Toronto Book Corpus 10 and most resembles the materials from prior investigations with 
naturalistic, fiction materials (e.g., 148–50). The “Written Misc” category consists of texts from the 
Brown Corpus 11 (different text genres, all written text), the Wall Street Journal Corpus 12 
(newswire), the Universal Dependencies Corpus (different text genres, all written text), the 
Contract Corpus (legal texts), and the CRAFT Corpus (biomedical articles). The “Spoken” 
category consists of spoken language from the Cornell Movie Dialogs corpus 17 (conversations 
from raw movie transcripts) and the spoken component of the Corpus of Contemporary 
American English 18 (unscripted conversations from TV and radio programs). Finally, the “Web” 
category consists of text scraped from the web 16 (C4 Common Crawl). SI Figure 10A shows 
the number of sentences from each of the four text sources for the drive, suppress, and 
baseline sentences. Although a large fraction of stimuli in the baseline and suppress sets come 
from the Written Fiction category, the drive set contains hardly any such sentences and is 
instead dominated by the Web category. Moreover, sentences from the Web sources span a 
larger range of surprisal values (demonstrated to modulate brain responses in Figure 5 in the 
main text) than the other text sources (SI Figure 10B). We note that the breakdown of text 
sources into these four categories is not meant to suggest that these are the main categories 
within “naturalistic” stimuli more broadly. Rather, our analysis aims to provide an intuition for 
what kinds of corpora the drive, suppress, and baseline materials are sampled from. Several 
prior studies leverage e.g., radio/internet podcasts or other types of storytelling (e.g., 51,52) which 
may not nicely fit into the four categories investigated here.   
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SI Figure 10. Drive and suppress sentences are largely from different types of text sources.  
A) We quantified which text sources the drive/suppress/baseline sentences came from. The bars show 
the number of sentences from each text source across the drive, suppress, and baseline sentences 
separately. 
B) We quantified the surprisal values across the total of n=1,500 drive/suppress/baseline grouped by text 
source. The bars show the average surprisal values (estimated by GPT2-XL; note that surprisal is the 
negative log probability reported in Figure 5 in the main text) for the baseline/drive/suppress materials 
grouped by text source, with scatter points showing average surprisal estimates for individual sentences.   
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SI 11: Quantification of n-gram overlaps between the baseline set and 
drive/suppress set 
In order to examine how much generalization beyond the training (baseline) set is required for 
predicting neural responses to the drive and suppress sentences, we investigated the extent of 
overlap between the drive/suppress sentences (n=500 sentences derived from the main search 
approach) and the baseline sentences. Moreover, we quantified, on a sentence-by-sentence 
level, whether greater overlap with the baseline set was associated with better predictions. To 
quantify n-gram overlap, we lower-cased all sentences, stripped punctuation and counted the 
number of unique n-grams across the baseline set (n=1,000 sentences). There were 2,310 
unique individual words, 4,415 unique bigrams, 3,951 trigrams, 2,996 4-grams, 1,999 5-grams, 
and finally 1,000 6-grams (as there were no duplicate sentences in the set, and the sentences 
are 6 words long). First, we note that no sentences within the drive/suppress set (n=500 
drive/suppress sentences derived from the main search approach) had any 5- or 6-gram 
overlaps with the baseline set. Only 1 of the 500 sentences (0.2%) had a 4-gram overlap with 
the baseline set, and only 39 sentences (7.8%) had 3-gram overlaps with the baseline set. 
Hence, the overlaps were largely on the individual word level (97.4% sentences had at least one 
overlapping word with the baseline set) or on the bigram level (50.0% sentences had at least 
one bigram overlap with the baseline set), which suggests that the drive/suppress sentences 
indeed were quite different from the baseline set. The number of unique individual words in the 
drive/suppress set that overlapped with the baseline set was 457 (out of 2,310 words, i.e., 
19.8%), and the number of unique overlapping bigrams was 198 (out of 4,415 bigrams, i.e., 
4.5%). A large fraction of the overlapping bigrams (58.6%) contained exclusively function words 
(e.g., “are in” or “out to”), again suggesting that the drive/suppress sentences were largely 
distinct from the baseline sentences. 
 
Next, we quantified whether n-gram overlap had a systematic effect on the sentence-level 
predictions of the drive/suppress sentences. SI Figure 11A shows the observed versus 
predicted brain responses from the n=3 evaluation participants using the main search approach, 
colored according to the n-gram overlap. As noted above and evident from the unigram subplot, 
the majority of drive/suppress sentences (97.4%) have at least one word in common with words 
that occurred in the baseline set. The proportion of overlapping words was generally higher in 
the suppress sentences as evidenced by darker colors (i.e., larger counts; see histogram insets) 
than in the drive sentences, indicating that the drive sentences in particular were highly non-
overlapping with the baseline sentences. As evident from the bigram and trigram subplots in SI 
Figure 11A, the number of bigrams and trigrams was in general lower compared to unigrams, 
with almost no trigram overlaps (7.8%). 
SI Figure 11B shows the absolute difference between the encoding model predictions and the 
observed brain responses versus n-gram overlap. For unigram overlaps, we evidenced a 
negative correlation: sentences with a larger number of overlapping words with the baseline set 
were in general predicted better (r = -0.23, p = 1.55e-07). Similarly, sentences with bigram 
overlap with the baseline set were predicted better (r = -0.16, p = 2.16e-04), whereas that was 
not the case for sentences with trigram overlaps (r = -0.04, p = 0.32). Although we do observe 
negative trends in these analyses, as one might expect (generalization to stimuli that are further 
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away from the training distribution is expected to be more challenging), we note that these 
trends do not explain much variability in prediction performance (unigrams: r2 = 0.053, bigrams: 
r2 = 0.026, trigrams: r2 = 0.002). 
 
 

 
SI Figure 11. Drive (and less so, suppress) sentences are largely distinct from the baseline 
sentences, and drive/suppress sentences that have greater n-gram overlap with baseline 
sentences are predicted slightly better. 
A) Sentence-level brain responses (y-axis) as a function of the predicted responses (x-axis) from Figure 3 
in the main text, colored according to the n-gram overlap (unigram, bigram, and trigram in separate 
subplots). A value of 0 means that none of the words in the sentence occurred in the baseline set, while a 
value of 6 means that every single word in the sentence occurred in the baseline set. Histogram insets 
show the distribution of the number of n-gram overlaps for the drive and suppress conditions separately. 
Dashed horizontal lines show the mean of the drive and suppress conditions.  
B) The absolute difference between the encoding model predictions and the observed brain responses 
(y-axis) as a function of the number of n-gram overlaps (x-axis; unigram, bigram, and trigram in separate 
subplots). Individual data points are sentences.   
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SI 12: Condition-level brain responses for the LH language network (not 
normalized) 

 
SI Figure 12. Condition-level responses for the LH language network (not normalized; this figure 
mirrors Figure 2 in the main text). 
A) The mean LH language network fMRI response (not z-scored) across respectively 250 drive, 250 
suppress, and 1,000 baseline sentences for n=3 evaluation participants, collected in an event-related, 
single-trial fMRI paradigm (Methods; fMRI experiments). In both A and B, individual points show the 
average of each condition per participant. Error bars show within-participant standard error of the mean.  
B) The mean LH language network fMRI response (not z-scored) across respectively 240 drive, 240 
suppress, and 240 baseline sentences (randomly sampled from the superset of 250/250 drive/suppress 
sentences and 1,000 baseline sentences) for n=4 evaluation participants, collected in a blocked fMRI 
design (Methods; fMRI experiments).  
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SI 13: Sentence-level brain responses versus predictions for individual 
participants  

 
SI Figure 13. Sentence-level brain responses from each of the three evaluation participants versus 
predicted responses from the encoding model (this figure supplements Figure 3 in the main text).  
Predicted brain responses were obtained from the encoding model (x-axis). The observed brain 
responses (y-axis) are from each of the evaluation participant’s LH language network (panels i-iii). The 
blue points represent the suppress sentences, the grey points represent the baseline sentences, and the 
red points represent the drive sentences. The suppress and drive sentences were selected to yield 
respectively low or high brain responses and are therefore clustered on the low and high end of the 
prediction axis (x-axis). Dashed horizontal lines show the mean of each condition.  
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SI 14: Sentence-level brain responses versus predictions (not normalized) 
 

 
SI Figure 14. Sentence-level brain responses from the average of three evaluation participants 
versus predicted responses from the encoding model (this figure mirrors Figure 3 in the main text 
where the responses are z-scored).  
Predicted brain responses were obtained from the encoding model (x-axis). The observed brain 
responses (y-axis) are the average of n=3 evaluation participants’ unnormalized LH language network 
responses (panels i-iii). The blue points represent the suppress sentences, the grey points represent the 
baseline sentences, and the red points represent the drive sentences. The suppress and drive sentences 
were selected to yield respectively low or high brain responses and are therefore clustered on the low and 
high end of the prediction axis (x-axis). Dashed horizontal lines show the mean of each condition. 
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SI 15: Control brain regions of interest   
In addition to language regions, we examined i) two large-scale brain networks linked to high-
level cognitive processing—the multiple demand (MD) network 38–42 and the default mode 
network (DMN) 43–47 which—similar to the language regions—were functionally defined using 
independent localizer tasks in each participant, and ii) a set of anatomical parcels 36 in an effort 
to cover the entire cortex.  

SI 15A: Multiple demand (MD) and default mode network (DMN) localizer task 
The task used to localize the domain-general Multiple Demand (MD) network was a spatial 
working memory task contrasting a harder condition with an easier condition in a standard 
blocked design with a counterbalanced condition order across runs (e.g., 40,53,54). The hard > 
easy contrast targets brain regions engaged in cognitively demanding tasks. Fedorenko et al. 40 
have established that the regions activated by this task are also activated by a wide range of 
other demanding tasks (see also 55,56). Note that the reverse contrast, easy > hard, has been 
shown to robustly activates default mode network (DMN) regions in prior work using similar 
tasks and contrasts 57–59. 
The easy > hard contrast targets brain regions which support introspective processes, such as 
mind wandering, reminiscing about the past, and imagining the future (e.g., 44,60). 
 
On each trial (8s), participants saw a fixation cross for 500ms, followed by a 3x4 grid within 
which randomly generated locations were sequentially flashed (1s per flash) two at a time for a 
total of eight locations (hard condition) or one at a time for a total of four locations (easy 
condition). Then, participants indicated their memory for these locations in a two-alternative, 
forced-choice paradigm via a button press (the choices were presented for 1,000 ms, and 
participants had up to 3s to respond). Feedback, in the form of a green checkmark (correct 
responses) or a red cross (incorrect responses), was provided for 250ms, with fixation 
presented for the remainder of the trial. Hard and easy conditions were presented in a standard 
blocked design (4 trials in a 32s block, 6 blocks per condition per run), counterbalanced 
condition order across runs. Each run included 4 blocks of fixation (16s each) and lasted a total 
of 448s. Participants completed 2 runs. Participants were instructed to perform the task to their 
best ability. 
 

SI 15B: Multiple demand (MD) network fROIs 
The MD fROIs were defined using the hard > easy working memory contrast from the MD 
localizer collected in each participant’s first scanning session.  
To define the MD fROIs, each individual hard > easy working memory contrast was intersected 
with a set of twenty binary parcels (ten in each hemisphere). These parcels were derived from a 
probabilistic activation overlap map for the same hard > easy contrast 40,53 in 197 participants 
using watershed parcellation, as described by Fedorenko et al. 61, and covered extensive 
portions of the lateral parietal and frontal cortices. Specifically, MD fROIs were defined in each 
hemisphere in the posterior (postParietal), middle (midParietal), and anterior (antParietal) 
parietal cortex, precentral gyrus (Precentral_A_precG), superior frontal cortex (supFrontal), 
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middle frontal gyrus (midFrontal) and its orbital part (midFrontalOrb), opercular part of the 
inferior frontal gyrus (Precentral_B_IFGop), the anterior cingulate cortex and pre-supplementary 
motor cortex (medialFrontal), and the insula (insula). These parcels were constrained to be 
bilaterally symmetric by averaging individual hard > easy contrast maps across the two 
hemispheres prior to generating the group-level parcel representation (only the group-based 
parcels, covering large swaths of cortex, were constrained in this way; fROIs were free to vary 
in their location across hemispheres, within the borders of these parcels). 
Within each of these twenty parcels, the 10% of voxels with the highest t-values for the hard > 
easy contrast were selected (see SI Table 15E for number of voxels in each fROI). In the rare 
cases where the top 10% t-statistic threshold was equal to or less than 0 (meaning that the 
voxels showed effects in the opposite direction), no voxels were extracted for that given ROI. 
 

SI 15C: Default mode network (DMN) fROIs 
The DMN fROIs were defined using the reverse contrast (i.e., easy > hard) from the MD 
localizer collected in each participant’s first scanning session.  
To define the DMN fROIs, following Mineroff, Blank et al. 62, each individual easy > hard 
contrast was intersected with a set of twelve binary parcels (six in each hemisphere). These 
parcels were derived from a probabilistic activation overlap map for the same easy > hard 
contrast  in 197 participants 40,53 using watershed parcellation, as described by Fedorenko et al. 
61 and covered extensive portions of the cingulate cortices and lateral frontal and temporal 
cortices. Specifically, DMN fROIs were defined in each hemisphere in the posterior cingulate 
cortex (PostCing) and middle cingulate cortex (MidCing), the temporoparietal junction (TPJ), in 
the medial frontal cortex (FrontalMed), the superior temporal gyrus (STGorInsula), and anterior 
temporal gyrus (AntTemp). These parcels were constrained to be bilaterally symmetric by 
averaging individual hard > easy contrast maps across the two hemispheres prior to generating 
the group-level parcel representation (only the group-based parcels, covering large swaths of 
cortex, were constrained in this way; fROIs in the current study were free to vary in their location 
across hemispheres, within the borders of these parcels). 
Within each of these twelve parcels, the top 10% of voxels with the highest t-scores for the easy 
> hard contrast were selected (see SI Table 15E for number of voxels in each fROI). In the rare 
cases where the top 10% t-statistic threshold was equal to or less than 0 (meaning that the 
voxels showed effects in the opposite direction), no voxels were extracted for that given ROI. 
 
 
(Because of small amounts of overlapping voxels between the language, MD, and DMN 
networks (0.12%, on average between the language and MD networks, and 0.35%, on average, 
between the language and the DMN), if a voxel was selected as belonging to both the language 
and the MD network, it was assigned to the language network; similarly, if a voxel was selected 
as belonging to the language network and the DMN, it was assigned to the language network.) 
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SI 15D: Anatomical Glasser parcels 
To supplement the functionally defined ROIs, we included anatomical parcels from the Glasser 
parcellation derived from multi-modal data in the Human Connectome Project 36. This 
parcellation contains 360 parcels in total (180 in each hemisphere). Because our functional MRI 
sequence did not cover the entire brain for some of the participants, we could not extract 
responses from the full set of 360 Glasser parcels for all participants. On average, responses 
were extracted from 353.71 parcels (std: 10.34) across n=14 participants (5 train participants, 5 
evaluation participants in the event-related fMRI design from the search and modify 
approaches, and 4 evaluation participants in the blocked fMRI design). 
 

SI 15E: Number of voxels in each (f)ROI 
Network ROI Mean voxels Median voxels Std voxels 
Language Lang LH Network 615.86 617 4.28 
Language Lang LH IFGorb 36.29 37 2.67 
Language Lang LH IFG 74.93 75 0.27 
Language Lang LH MFG 47.0 47 0.0 
Language Lang LH AntTemp 162.93 163 0.27 
Language Lang LH PostTemp 294.71 295 1.07 
Language Lang RH Network 615.43 617 5.88 
Language Lang RH IFGorb 36.71 37 1.07 
Language Lang RH IFG 75.0 75 0.0 
Language Lang RH MFG 47.0 47 0.0 
Language Lang RH AntTemp 162.21 163 2.94 
Language Lang RH PostTemp 294.5 295 1.87 
MD MD LH Network 1477.29 1526 141.85 
MD MD LH postParietal 394.92 396 1.66 
MD MD LH midParietal 86.92 87 0.29 
MD MD LH antParietal 200.86 201 0.36 
MD MD LH supFrontal 179.79 180 0.8 
MD MD LH PrecentralAprecG 117.71 118 0.83 
MD MD LH PrecentralBIFGop 63.21 64 2.67 
MD MD LH midFrontal 159.86 160 0.36 
MD MD LH insula 52.64 56 12.75 
MD MD LH medialFrontal 110.64 112 2.21 
MD MD RH Network 1483.71 1532 142.44 
MD MD RH postParietal 394.31 396 2.9 
MD MD RH midParietal 86.92 87 0.29 
MD MD RH antParietal 201.0 201 0.0 
MD MD RH supFrontal 179.86 180 0.36 
MD MD RH PrecentralAprecG 116.07 118 4.91 
MD MD RH PrecentralBIFGop 62.43 64 2.95 
MD MD RH midFrontal 159.79 160 0.58 
MD MD RH midFrontalOrb 163.0 163 0.0 
MD MD RH insula 55.46 64 15.27 
MD MD RH medialFrontal 109.43 111 4.62 
DMN DMN LH Network 538.64 542 16.36 
DMN DMN LH FrontalMed 334.0 335 2.94 
DMN DMN LH PostCing 68.29 72 8.34 
DMN DMN LH TPJ 65.21 67 3.64 
DMN DMN LH MidCing 15.86 18 4.69 
DMN DMN LH STGorInsula 32.0 32 0.0 
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DMN DMN LH AntTemp 23.29 26 6.24 
DMN DMN RH Network 540.71 544 12.69 
DMN DMN RH FrontalMed 333.36 334 2.13 
DMN DMN RH PostCing 68.64 72 7.09 
DMN DMN RH TPJ 64.71 67 4.55 
DMN DMN RH MidCing 17.07 18 2.37 
DMN DMN RH STGorInsula 32.0 32 0.0 
DMN DMN RH AntTemp 24.93 26 2.3 
Glasser Glasser LH LangNetw 4821.36 4883 195.75 
Glasser Glasser RH LangNetw 4998.21 5028 168.4 

 
SI Table 15E. The table shows the mean/median/standard deviation number of voxels in each fROI for 
the language network, the multiple demand (MD) network, the default mode network (DMN) as well as the 
anatomically defined language network (Glasser) across n=14 participants in the study. 
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SI 15F: Condition-level brain responses for the five left-hemisphere language fROIs 

 
SI Figure 15F. Condition-level brain responses for individual left-hemisphere (LH) fROIs 
The mean BOLD response (z-scored) across respectively 250 drive, 250 suppress, and 1,000 baseline 
sentences for n=3 evaluation participants, collected in the event-related, single-trial fMRI paradigm. The 
plots complement Figure 2 in the main text for the full LH language network, and all plots are shown on 
the same y-axis limits (-0.5, 0.5) except for LH IFG which is plotted on a slightly different y-axis upper 
bound (0.52 instead of 0.5). Individual points show the average of each condition per participant. Error 
bars show within-participant standard error of the mean.  
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SI 15G: Condition-level brain responses for three large-scale brain networks 

 
SI Figure 15G. Condition-level brain responses for language, MD, and DMN networks (both 
hemispheres). 
The mean BOLD response (z-scored) across respectively 250 drive, 250 suppress, and 1,000 baseline 
sentences for n=3 evaluation participants, collected in the event-related, single-trial fMRI paradigm. 
Individual points show the average of each condition per participant. Error bars show within-participant 
standard error of the mean. The brain illustrations show the anatomical parcels (demarcations) that were 
used to constrain the participant-specific activations for each network in individual participants. 
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SI 16: Driving and suppressing brain responses using the modify approach 
In an exploratory part of this study, we evaluated whether it is possible to drive and suppress 
brain responses with completely novel strings (that do not exist in corpora). To do so, we 
developed a gradient-based modify method, in which a subset of words in a random ‘seed’ 
sentence are replaced with words such that the modified sentence maximizes or minimizes the 
predicted language network response. We deliberately avoided constraining the modify 
algorithm to only generate strings that are sensible and grammatically well-formed. As a result, 
the generated strings often resemble lists of unconnected words (see SI Table 16B and 16C for 
examples). Similar to the search approach, we generated 250 drive sentences and 250 
suppress sentences. We collected brain responses to these 500 drive/suppress sentences 
interspersed among the baseline sentences in an event-related design in two new participants 
(3 sessions each, n=6 sessions total) (SI Figure 16). 
 
We first describe the sentence generation procedure (SI 16A) followed by evaluation of the 
recorded brain responses (SI 16B).  
 

SI 16A: Generating sentences using the modify algorithm 

The modify algorithm 
The approach starts with a random seed sentence. The goal is to find an optimal modification to 
this sentence such that the encoding model (Methods; Encoding model development) would 
predict the modified sentence to yield either a high (drive) or a low (suppress) response in the 
language network. Modifying a sentence in this context involves replacing one or more words. 
For example, a seed sentence “Running slow makes me very happy” could be turned into a 
modified sentence “Running car makes me dull happy” by replacing two words (slowàcar and 
veryàdull). 
 

 
SI Table 16A. Pseudo-code for the modify optimization algorithm. 
The pseudo-code is referenced in the text. 

1: Input: Random S = {xi}
n
i=1, model M = θmap ◦ θLLM; Learning

rate ↵; Loss function `; Modification iterations N ; Number of word
sites to modify k

2: . Word site selection

3: T = OrderByImportance({xi}
n
i=1)

4: . From Wallace et. al. (2019)
5:

6: . Word site modification

7: u = x

8: for j in N do

9: for xi in T do

10: if k > 0 then

11: u
soft
i = softmax(ui)

12: ui= Multinomial(usoft
i )

13: k = k − 1
14: end if

15: end for

16: ypred= M(u) . Forward pass
17: r = ∂

∂u
`(ypred) . Backward pass

18: u = u − ↵.r
19: end for

20: Sgen= u

21: return Sgen
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Details of the algorithm: 
 

• Decisions about how many words to replace: 
We constrained the number of modifications made to any given seed sentence. A larger number 
of modifications per sentence allows for greater modulation of the sentence’s overall surprisal 
(as estimated by an LLM) and thus can facilitate achieving some target predicted level of brain 
response, but it is computationally costly. In our initial experiments on a small subset of seed 
sentences, we observed that suppress sentences were more difficult to generate than drive 
sentences. We therefore allowed for more modifications for suppress sentences (between 1 and 
5 word replacements; cf. between 1 and 4 word replacements for the drive sentences).  
The number of allowed replacements is provided as the input parameter k to the algorithm (line 
1 in SI Table 16A). 
 

• Decisions about which words to replace (line 3 in SI Table 16A): 
For a given number of replacements (k), we select the k words whose replacements modulate 
the predicted brain responses the most, as determined using the method of integrated gradients 
70,72. This method ranks the words in the seed sentence by their sensitivity to the encoding 
model’s predictions. We pick the top-k words from the ranked list. 
For simplicity, we do not modify words in the seed sentence that map to multiple byte-pair 
tokens. Additionally, if the first word of a seed sentence was selected to be modified, we 
constrain it to be capitalized so as to match the format of sentences from the baseline set (i.e., 
selecting only from capitalized words in the vocabulary). 
 

• Decisions about which words to use as replacements (lines 6-20 in SI Table 16A): 
We frame the optimal modification of a sentence as a problem in gradient-based search. 
Broadly, the algorithm seeks to modify the seed sentence (by replacing the top-k number of 
words) such that the predictions of the encoding model for the modified sentence optimize the 
loss function (elaborated below). 
 
Each word in the seed sentence is represented using a vector where each index corresponds to 
a candidate replacement word. Our candidate replacement words consist of the 50,257 words 
from the GPT2-XL vocabulary, yielding a vector of size 50,257 for each of the top-k words that 
are to be replaced. If the word “slow” is to be replaced, the index in the vector corresponding to 
“slow” will have a value of 1, and 0 in all other indices before the optimization pass, meaning 
that the vector represents the word “slow” with probability 1. During the optimization pass, this 
vector is iteratively modified to identify candidate replacement words. For example, after one 
optimization pass, the vector might result in a value of 0.3 in the index corresponding to “slow” 
and a value of 0.7 in the index for “car”, which means that the word “car” is likely to be a good 
replacement candidate to meet the objective (i.e., achieve a particular value of the predicted 
brain response for the sentence; see Decisions about goal objectives below). Hence, after the 
optimization pass (lines 16-18 in SI Table 16A), the vector for each of the top-k words contains 
a distribution of values (higher values mean a replacement that is more likely to lead to the 
sentence achieving the desired objective). The optimizer modifies all the top-k words 
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simultaneously in a given iteration (i.e., jointly optimizes the vectors corresponding to the top-k 
word sites). In the optimization process, we chose the following mean squared error loss 
function: (goal objective – predicted response on the modified sentence)2. We discuss how we 
establish goal objective in the following section. 
 
The optimization algorithm operates on the continuous-valued vector representations of the top-
k words in the seed sentence, and modifies these representations. Selecting a specific 
replacement word from the resulting optimized vector (the discretizing step; lines 11-12 in SI 
Table 16A) is typically done by simply selecting the vector index with the highest value (e.g., 
63,70). We instead employ multinomial sampling, which samples a word index assuming that the 
distribution of index values is multinomial. The word index that gets sampled the most times 
across multiple samples (20-25 samples; see Additional hyperparameters) is selected as the 
replacement. Multinomial sampling has been shown to provide better estimates than selecting 
the highest value 71.  
 
In summary, the optimization algorithm identifies optimal replacements for the top-k words in the 
sentence, resulting in a new sentence u (line 18 in SI Table 16A). We ran the optimization 
algorithm N times (an input parameter to the algorithm; see Additional hyperparameters) for 
each seed sentence. The modified sentence obtained in one iteration of the algorithm is the 
input sentence to the next iteration. The modified sentence from the final iteration of the 
algorithm is the sentence we consider for our experiments (line 20 in SI Table 16A).  
 

• Decisions about the goal objectives: 
The range of brain response values predicted by the encoding model on the baseline set (used 
to train the encoding model) was in the range [-0.47, +0.54]. To create strings whose predictions 
would go beyond the upper bounds of the positive and negative responses observed for the 
baseline set, we selected our desired prediction goals to be +1.2 for the drive set and -0.8 for 
the suppress set. These values were selected after experimenting with a wider range of goal 
values and observing that for more extreme values like +5 and -5, the algorithm failed to 
generate strings with the desired predictions. 
 

• Additional hyperparameters: 
Aside from i) the number of words (k) to replace in a seed sentence (between 1 and 4 for the 
drive stimuli, and between 1 and 5 for the suppress stimuli, as noted above) and ii) the goal 
objectives (+1.2 for drive and -0.8 for suppress, as noted above), the algorithm’s 
hyperparameters included:  

iii) N: the number of iterations that the optimization algorithm is run; 
iv) α: the learning rate of the optimizer; 
v) the number of multinomial samples drawn in order to select the replacement word.  

 
Empirically, it has been found that assigning larger hyperparameter values in the initial few 
iterations, followed by smaller values in the later iterations, is effective at finding optimal 
solutions 73. Consequently, we ran the algorithm in two rounds for each sentence, where the 
output string from round 1 was the input string to round 2. We selected hyperparameters that 
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allowed faster convergence towards a solution in the first round, and smaller values in the 
second round. The hyperparameter values (for hyperparameters not already discussed) were as 
follows: 

• N: round 1: 40; round 2: 60 
• α: round 1: 0.01; round 2: 0.005 
• number of multinomial samples: round 1: 20; round 2; 25 

 
All sentences were run through two rounds of the algorithm, except for suppress sentences that 
had a predicted brain response above 0.25 after round 1. In our initial experiments, we found 
that the algorithm was unable of lowering the predictions substantially if the starting point brain 
response prediction was greater than 0.3, and we therefore decided to save on computation by 
only running the suppress sentences with the lowest predicted brain responses through round 2 
of the algorithm. 
 
For details on the modify algorithm, see https://github.com/ALFA-group/GOLI for code, SI Table 
16A for pseudocode; and 63–70 for related approaches. 
 
Selecting the final sets from the candidate materials 
We started with 1,500 seed sentences. These 1,500 seed sentences were obtained from the 
same 11 corpora as used for search material procedure, see SI 9). From each of the three main 
text categories (written, web, and spoken), we randomly sampled 1,000 sentences. These 3,000 
sentences were filtered according to the exclusion criteria reported in SI 2. Finally, we sampled 
500 sentences from each text category post-filtering, leading to the final set of 1,500 seed 
sentences. We performed two rounds of the modification algorithm based on the 1,500 seed 
sentences, and ended up with a total of 5,114 candidate sentences (3,000 drive and 2,114 
suppress sentences). 
To identify a set of 250/250 drive and suppress sentences (500 total), we followed a five-step 
procedure, which mirrors the procedure used for selecting the search materials, with one 
additional consideration to exclude modified sentences created from the same seed sentence. 
First, we filtered the sentences according to the automatic exclusion criteria reported in SI 2. 
Additionally, in modify, we ensured that we selected only one sentence from the sentences 
produced in each of the two modification rounds that a seed sentence underwent. Among the 
sentences from the two different modification rounds, we selected the one closest to the desired 
prediction and which passed the automatic exclusion criteria. This automatic exclusion 
procedure excluded 3,075 sentences out of 5,114 (1,951 for drive, 1,124 for suppress), leaving 
us with 2,039 sentences (1,049 for drive, 990 for suppress). Second, we checked for duplicate 
sentences in the set, and none were identified. Third, out of these candidate 1,049 drive 
sentences and 990 suppress sentences, we selected drive sentences above the 50th percentile 
of predicted language network response (out of 1,049 drive sentences) and selected suppress 
sentences below the 50th percentile of predicted language network response (out of 990 for 
suppress sentences), effectively filtering out half of our candidate sentences. Hence, for drive 
sentences the percentile exclusion left us with 524 sentences (the 50th percentile was 0.565). 
For suppress sentences, the percentile exclusion left us with 495 sentences (the 50th percentile 
was -0.056). Fourth, we manually marked sentences for exclusion according to the exclusion 
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criteria reported in SI 2. As a result, 19 drive sentences and 4 suppress sentences were 
excluded, leaving 505 drive candidate sentences and 491 suppress candidate sentences 
respectively. Fifth and finally, to make our sentence selection independent of human judgment, 
we randomly sampled 250 sentences from each set (drive and suppress), leaving us with the 
final set of 500 drive/suppress sentences from the modify approach. 
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SI Table 16B. Example drive sentences generated by the modify algorithm from a random seed sentence 
(first column). The output from modify round 1 was used as input to modify round 2 in an attempt to 
further optimize the loss objective (in this case, higher predicted brain response values). The predictions 
after each iteration are shown in the “Pred” columns. 
  

Seed sentence Pred Sentence round 1 Pred Sentence round 2 Pred 
Create holiday cards, gifts and 
decorations. 

-0.06 Create obesity cards, 
Advisory and Ok. 

0.72 Create obesity massacre, false 
and Ok. 

0.83 

White Gates - the 
quintessential country cottage. 

0.13 White measles - the 
quintessential country Had. 

0.65 White measles - the 
quintessential Dept Had. 

0.79 

Reversing that would be too 
radical. 

0.06 Reversing that Revenue 
Roberts too HUM. 

0.67 Reversing that Revenue 
Roberts too EXP. 

0.79 

Proximity says it very well 
could. 

0.12 Proximity clasp it very Cav 
resp. 

0.71 Proximity clasp it very Cumm 
resp. 

0.78 

The staff is hospitable and 
helpful. 

-0.03 The staff is hospitable and 
helpful. 

-0.03 Elsa staff is hospitable and 
IND. 

0.78 

They would never have taken 
this. 

0.11 They would Azerbaijan subs 
taken MIT. 

0.61 ASY would Azerbaijan subs 
taken MIT. 

0.72 

In fact I feel your pain. 0.12 In issu Perry feel your 
Former. 

0.63 In wars Perry feel your Former. 0.72 

The industry does take that 
position. 

0.16 The industry Warp take that 
def. 

0.61 The industry obstacles Married 
that def. 

0.71 

The Blue pointed off to town.. 0.12 The Blue pointed ritual to 
Recommend.. 

0.61 The Blue pointed rematch to 
Recommend.. 

0.71 

It is not going to work. -0.10 It is Kat going to IND. 0.58 ARK is Kat going to IND. 0.71 
You need to wait more time. -0.11 You Mason to glowing more 

prob. 
0.62 ODY Mason to glowing more 

prob. 
0.71 

Then why are you so upset? 0.01 Then why are you so These? 0.58 Thor why are you so These? 0.71 
We have the moment you 
missed. 

0.12 We have the Dynasty you 
recomm. 

0.62 Vote have the Dynasty you 
recomm. 

0.70 

Is there any other reason, 
really? 

0.00 Is SELECT any revised 
wretched, really? 

0.56 Wars SELECT any revised 
wretched, really? 

0.68 

All that, plus our newsmaker 
tonight. 

0.21 All that, Called our 
newsmaker pred. 

0.66 All that, Called our newsmaker 
pred. 

0.66 

This house must not be sold! -0.04 This house must not be sold! -0.04 USA house must not be ex! 0.65 
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Seed sentence Pred Sentence round 1 Pred Sentence round 2 Pred 
I ran back to the door. -0.26 People ran back to the door. -0.32 We ran back to the door. -0.35 
First, we have a big story. -0.06 First, we have a big frame. -0.25 Look, we have a big frame. -0.35 
He glanced back out the 
door. 

-0.28 Driver pops back out the door. -0.24 It pops back out the door. -0.30 

We have very little time left. -0.21 Cos have very little time limit. -0.11 They have very little time limit. -0.29 
Right in the middle of town. -0.09 You in the middle of town. -0.16 There in the middle of town. -0.27 
The keys were in the ignition. -0.21 The keys were in the ignition. -0.21 Some keys were in the 

ignition. 
-0.26 

Marcus watched Havily leave 
the room. 

-0.10 Child watched Havily leave the 
room. 

-0.13 They watched Havily leave the 
room. 

-0.26 

She answered on the first 
ring. 

0.08 She answered on the first 
ledge. 

-0.02 She stretched on the first 
ledge. 

-0.24 

And we had a wonderful 
lunch. 

-0.26 Launch we had a wonderful 
lunch. 

-0.19 Loop we had a wonderful view. -0.24 

This time two men got out. -0.08 This time two men got alone. -0.16 Some time two men got alone. -0.24 
She answered on the first 
ring. 

0.08 She answered on the first 
ledge. 

-0.02 She stretched on the first 
ledge. 

-0.24 

I got cut a few times. -0.06 Owner got awake a few times. -0.14 Del got awake a few times. -0.24 
It's time for us to hunt. -0.10 There's time for us to jumper. -0.16 There's time for us to strut. -0.23 
She couldn't handle any more 
confessions. 

-0.12 Every couldn't handle any 
more signalling. 

-0.13 They couldn't handle any more 
signalling. 

-0.23 

Sixteen attractive shoes 
around the pot. 

-0.04 Sixteen settled shoes around 
the rubbish. 

-0.20 Sixteen settled shoes around 
the courtyard. 

-0.23 

This is quite an interesting 
task. 

-0.14 Statement is quite an 
interesting task. 

-0.04 It is quite an interesting task. -0.22 

We could use a new faucet. -0.10 Teen could use a new faucet. -0.08 They could use a new faucet. -0.20 
 
SI Table 16C. Example suppress sentences generated by the modify algorithm from a random seed 
sentence (first column).  
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SI 16B: Evaluating brain responses to the drive/search sentences derived using modify 
SI Figure 16A shows the average responses for the n=2 evaluation participants for the drive, 
suppress (derived using the modify method), and baseline sentence conditions. The drive 
sentences yielded significantly higher responses than the suppress sentences (β=0.12, t=2.77, 
p<.05). The drive sentences also yielded significantly higher responses than the baseline 
sentences (β=0.20, t=5.57, p<.001) with the evoked BOLD signal being 57% higher for the drive 
condition relative to baseline (quantified using non-normalized BOLD responses). The suppress 
sentences did not yield significantly lower responses than the baseline sentences (β=0.07, 
t=2.06, p=0.098), in fact, the evoked BOLD response was 19.5% higher for the suppress 
condition relative to baseline. SI Figure 16B shows the observed versus predicted brain 
responses in the left hemisphere language network for the modify-based sentences along with 
the baseline sentences. Across the full set of 1,500 baseline, drive, and suppress sentences, we 
obtained a Pearson correlation of 0.22 (p<.001) between observed and predicted brain 
responses. For the 1,000 baseline sentences, the correlation was 0.32 (p<.001). 
 
 

 
SI Figure 16. Sentences with word replacements show some ability to drive and suppress the 
language network but sentence-level predictions are not accurate. 
A) The mean LH language network fMRI response across respectively 250 drive, 250 suppress (derived 
using the modify approach), and 1,000 baseline sentences for n=2 evaluation participants collected in an 
event-related, single-trial fMRI design. Individual points show the average of each condition per 
participant. Error bars show within-participant standard error of the mean. The brain illustrations show the 
functionally defined language network in the participants of interest on the surface-inflated brain.  
B) Sentence-level brain responses as a function of the predicted responses along with sentence 
examples. Predicted brain responses were obtained from the encoding model (x-axis). The true brain 
responses (y-axis) are the average of n=2 evaluation participants (LH language network). The blue points 
represent the suppress sentences, the gray points represent the baseline sentences, and the red points 
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represent the drive sentences. Dashed horizontal lines show the mean of each condition.  
Inset: The simulated brain responses (y-axis) were obtained by sampling from a noise distribution 
representing the empirical inter-participant variability. This plot illustrates the maximum possible predictive 
performance, given inter-participant variability and fMRI measurement noise. 
C) Example sentences from each condition (note that the baseline set contains the same materials as in 
all remaining parts in this study).  
 
 
To better interpret the accuracy of sentence-level predictions, we quantified the maximal 
possible prediction performance by treating inter-participant variability as “noise” that cannot be 
predicted by a computational model (same approach as in Results; Model captures most 
explainable variance in new participants). According to these calculations, we could have 
expected to obtain a Pearson correlation of 0.57 across all 1,500 sentences (observed: 0.22, i.e. 
38.6% of the theoretically obtainable correlation), and Pearson correlation of 0.35 for the 1,000 
baseline sentences (observed: 0.32, i.e. 91.4% theoretically obtainable correlation) (SI Figure 
16C). Hence, for the baseline sentences we evidenced a moderate correlation between 
observed and predicted brain responses (similar to what we observed for the n=3 evaluation 
participants in the search experiment), but the correlation for the full set of sentences, including 
the modify-based drive/suppress sentences, was lower. Overall, the results from the modify 
approach suggest that novel sentences created using gradient-based word modifications 
modulated responses in the language network to some degree, but that the encoding model 
predictions for the individual drive and suppress sentences were inaccurate. This could be due 
to (at least) two reasons: i) the resulting strings were often akin to word lists (see SI Table 16B, 
16C), which generally elicit a relatively lower response in the language network (e.g., 61,4,74) (the 
modify sentences were generally rated as ungrammatical and implausible by human 
participants; SI 19) and ii) word lists were not included as part of the training set for the 
encoding model. 
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SI 17: Comparison of GPT2-XL encoding model versus surprisal-based 
encoding models 
The encoding model used in this work was based on the hidden states (i.e., unit activations) 
from the Transformer model GPT2-XL 75 (Methods; Encoding model development). Motivated 
by the pervasive role of surprisal in accounting for behavioral and neural responses during 
language processing (e.g., 76–78; and Figure 5C in the main text), we developed encoding 
models based on surprisal estimates and evaluated their predictivity relative to our main 
encoding model. In particular, we obtained surprisal estimates from two surprisal models that 
predated Transformers: a lexical n-gram model (5-gram; see details in SI 20A) and a 
probabilistic context-free grammar model (PCFG; see details in SI 20B). Both n-gram and 
PCFG surprisal have been shown to explain (independent) variance in the language network’s 
neural response during story comprehension 79. For completeness, we also included surprisal 
estimates from GPT2-XL (Methods; Sentence properties that modulate brain responses).  
 
First, we evaluated the cross-validated prediction performance of the surprisal models on the 
baseline set (n=1,000 sentences) in a procedure identical to the one reported in SI 6. For 
reference, the performance of the GPT2-XL hidden states encoding model (i.e., using the 
representations from the Transformer blocks, specifically block 22, as opposed to the surprisal 
estimate obtained via a linear layer at the last block) was Pearson r = 0.38 (67.9% of the noise 
ceiling which was estimated to be r = 0.56, see SI 5). Performance of the n-gram, PCFG, and 
the GPT2-XL surprisal models was substantially lower: 5-gram surprisal model: r = 0.23 (41.1% 
of the noise ceiling); PCFG surprisal model: r = 0.15 (26.8% of the noise ceiling), and GPT2-XL 
surprisal model: r = 0.22 (39.3% of the noise ceiling). 
 
Next, we evaluated how well the surprisal models could account for the data obtained from the 
n=3 evaluation participants on the n=1,500 sentences (the drive/suppress/baseline sentences). 
Although this comparison is not completely fair to the surprisal models (given that the stimuli 
were obtained using the GPT2-XL encoding model), it still provides a proxy for the held-out 
participant predictivity performance of the surprisal models. SI Figure 17 shows the observed 
sentence-level brain responses versus the predictions obtained from the main encoding model 
(panel A; same as Figure 3 in the main text) vs. the three surprisal models (panels B-D). As 
evident from the plots and in line with the cross-validated performance evaluation, the surprisal 
models fall short of the encoding model’s performance. 
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SI Figure 17. The encoding model based on the GPT2-XL hidden states achieves higher 
predictivity compared to the encoding models based on univariate sentence surprisal estimates.  
We compared the performance of the encoding model (based on GPT2-XL hidden states; Panel A) 
against surprisal estimates from three surprisal models (panels B-D) on n=3 evaluation participants on 
the n=1,500 sentences (the drive/suppress/baseline sentences). The panels show the sentence-level 
brain responses as a function of the predicted responses and the plots mirror Figure 3 in the main text 
(same x- and y-axis limits). The only difference is that the predicted brain responses were obtained from 
the surprisal models in panels B-D.  
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SI 18: Statistical significance of the differences in the BOLD response 
among sentence conditions 
Section SI 18A contains statistics accompanying Results; Model-selected sentences control 
language network responses” in the main text based on the search approach.  
Section SI 18B contains statistics accompanying SI 16 based on the modify approach. 

SI 18A: Search participants (n=3 participants with 1,500 BOLD responses each) 
BOLD response data met assumptions of normality (via Kolmogorov-Smirnov test) and equal 
variances (via Levene test). 

Linear mixed effect formula: 

BOLD response ~ condition + (1 | sentence) + run_within_session + trial_within_run 
 

Model term Coefficient SE t p df 
intercept 0.073* 0.029 2.569 0.01 4493 

condition_D 0.273*** 0.028 9.734 <0.001 4493 
condition_S -0.293*** 0.028 -10.448 <0.001 4493 

run_within_session -0.003 0.003 -0.941 0.347 4493 
trial_within_run -0.002** 0.001 -3.004 0.003 4493 

SD (Intercept 
item_id_factor) 

0.131     

SD (Observations) 0.649     
Num.Obs. 4500     
R2 Marg. 0.060     
R2 Cond. 0.096     

AIC 9112.2     
BIC 9157.1     

RMSE 0.64     

+p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001 

SI Table 18Ai. Effect size estimates, standard error estimates, t-statistics, p-values, degrees of freedom 
for the LME model as well as model fit statistics (e.g., R2). “condition_D” and “condition_S” denote 
respectively the drive and suppress condition (the baseline condition was coded in the intercept). 

Contrast  Estimate      SE    df  t.ratio  p.value 
 B - D       -0.273  0.0281  1504   -9.723   <.0001 
 B - S        0.293  0.0281  1504   10.435   <.0001 
 D - S        0.567  0.0356  1505   15.933   <.0001 

 
SI Table 18Aii. Pairwise comparisons of conditions (using estimated marginal means). Degrees-of-
freedom method was Kenward-Roger and p-value adjustment was Tukey method for comparing a family 
of 3 estimates. 
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SI 18B: Modify participants (n=2 participants with 1,500 BOLD responses each) 
BOLD response data met assumptions of normality (via Kolmogorov-Smirnov test) and there 
was a marginal effect suggesting unequal variances (via Levene test, p=0.043). 

Linear mixed effect formula: 

BOLD response ~ condition + (1 | sentence) + run_within_session + trial_within_run 
 

Model term Coefficient SE t p df 
intercept 0.003 0.035 0.086 0.932 2993 

condition_D 0.197*** 0.035 5.575 <0.001 2993 
condition_S 0.073* 0.035 2.065 0.039 2993 

run_within_session -0.001 0.004 -0.179 0.858 2993 
trial_within_run -0.002** 0.001 -2.072 0.038 2993 

SD (Intercept item_id_factor) 0.246     
SD (Observations) 0.613     

Num.Obs. 3000     
R2 Marg. 0.013     
R2 Cond. 0.150     

AIC 6047.6     
BIC 6089.6     

RMSE 0.57     

+p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001 

SI Table 18Bi. Effect size estimates, standard error estimates, t-statistics, p-values, degrees of 
freedom for the LME model as well as model fit statistics (e.g., R2). “condition_D” and “condition_S” 
denote respectively the drive and suppress condition (the baseline condition was coded in the 
intercept). 

 
Contrast  Estimate SE df         t.ratio     p.value 

 B - D      -0.1965  0.0353 1505    -5.568    <.0001 
 B - S      -0.0728        0.0353 1504    -2.062    0.0982 
 D - S 0.1238         0.0447 1505  2.772     0.0156 

 
SI Table 18Bii. Pairwise comparisons of conditions (using estimated marginal means). Degrees-of-
freedom method was Kenward-Roger and p-value adjustment was Tukey method for comparing a family 
of 3 estimates. 
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Sections related to sentence properties that modulate brain 
responses 

SI 19: Average values for each sentence property across conditions 

 
SI Figure 19. Average values for each sentence property.  
Average values for each sentence property (n=11 sentence properties) are shown across the full set of 
n=2,000 sentences (1,000 baseline sentences, 250/250 drive/suppress sentences from the main search 
approach, and finally 250/250 drive/suppress sentences from the exploratory modify approach). Individual 
data points show individual sentences. We quantified whether properties for each of the drive and 
suppress conditions (from either search or modify) were significantly different from the baseline condition 
via non-parametric permutation tests. Across 1,000 iterations, we sampled 250 sentences (with 
replacement) from the drive/suppress condition and 250 sentences (with replacement) from the baseline 
condition. We generated a null distribution by randomly permuting the condition assignment and 
measuring the difference between the average of these permuted condition assignment lists. The p-value 
was obtained by counting the number of times the absolute difference was smaller than the absolute 
values measured from the permuted data (two-sided test), divided by the number of permutations 
(n=1,000). P-values were corrected for multiple comparisons (across all 44 comparisons) using the 
Bonferroni procedure. Significance values are denoted as: p<.001: ***; n.s.: non-significant.   
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SI 20: Brain responses versus surprisal: Additional surprisal estimates  
In the main text (Figure 5), we estimated surprisal (log probability) across all sentences in the 
study (n=2,000 sentences) using GPT2-XL. GPT2-XL surprisal is sensitive to all preceding 
words in the sentence and is trained on massive amounts of diverse text. Here, we included two 
additional surprisal models to capture distinct information about the predictability of each 
sentence, specifically: 1) An n-gram model that is sensitive to word co-occurrence patterns of a 
certain number of preceding words (in our case, four) but limited in its ability to model 
hierarchical language syntax, 2) A probabilistic context-free grammar (PCFG) model that is 
sensitive to the syntactic structure of the sentence but does not directly encode word co-
occurrence patterns.  

SI 20A: Lexical n-gram (5-gram) surprisal 
Lexical surprisal was computed using a 5-gram language model which estimates surprisal given 
the preceding four words (i.e., for the first four words there is no such window; the surprisal for 
the first word of a sentence is the probability of that given word beginning the sentence, for the 
second word it is the 2-gram probability and so on). The model was trained using the KenLM 
library (80; build on 12/24/2022; https://github.com/kpu/kenlm) with default smoothing 
parameters (modified Kneser-Ney smoothing) on the training set of Wikitext-103 81. The training 
data were tokenized using the sent_tokenizer from the NLTK library (11; version 3.8.1) followed 
by tokenization of sentences using the wordpunct_tokenizer from the same library. Punctuation 
was stripped and all words were lower-cased. The same tokenization and preprocessing 
procedure was applied to the drive/suppress/baseline materials. Surprisal estimates for each 
word in the materials was obtained using default parameters of the full_scores function in 
KenLM. Surprisal for each word in the sentence along with an end-of-sentence token (</s>) was 
computed. 223 unique words from our materials (out of a total of 4,119 unique words, 5.41%) 
were out of vocabulary for the n-gram model and hence surprisal could not be estimated for 
these words. We obtained the sentence-level surprisal by taking the mean of the word-level 
surprisals. 
 

SI 20B: Probabilistic context-free grammar (PCFG) surprisal 
Lexicalized probabilistic context-free grammar (PCFG) surprisal was computed using the 
incremental left-corner parser of van Schijndel et al. 82 trained on a generalized categorial 
grammar 83 reannotation of Wall Street Journal sections 2 through 21 of the Penn Treebank  . 
Each sentence was tokenized using a Penn Treebank Tokenizer and punctuation was retained. 
We obtained the sentence-level surprisal by taking the mean of the word-level surprisals. 
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SI 20C: Scatterplots of brain responses versus additional surprisal estimates 

 
SI Figure 20C. Sentence-level brain responses as a function of two additional surprisal estimates 
(supplementary to Figure 5 in the main text). The brain responses (y-axis) were averaged across n=5 
train and n=5 evaluation participants (250/250 drive/suppress sentences from the search approach and 
250/250 drive/suppress from the exploratory modify approach as well as 1,000 baseline sentences. The 
insets show the average brain response with each property grouped into six uniformly sized bins. The 
color of the inset point denotes how many datapoints were available within each bin. 
The 5-gram log probability values were correlated with the PCFG log probability values at Pearson r = 
0.59. (GPT2-XL log probability was correlated with 5-gram log probability at r = 0.56 and with PCFG log 
probability at r = 0.42 (on the n=1,000 baseline set)). 
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SI 21: Modulation of individual brain regions’ responses by sentence 
properties 
To complement the analyses for the whole left hemisphere (LH) language network in the main 
text (Results; Sentence complexity modulates language network responses), we investigated 
the modulation of individual brain regions’ responses by sentence properties. We here 
examined i) functionally defined language ROIs (5 in the LH, 5 in the RH; see Methods; 
Definition of ROIs), and ii) a set of anatomical parcels 36 located in typically language-
responsive areas. 
 
First, we quantified the similarity among the n=10 language fROIs in how they are modulated by 
the different sentence properties for the n=1,000 baseline sentences (SI Figure 21A). We 
included the RH fROIs because several lines of work suggest some functional differentiation 
between the LH and RH language fROIs (e.g., 85,86). These analyses are similar to those 
reported in Figure 5A in the main text for the whole LH language network but break down the 
findings by fROI. As evident from the SI Figure 21A (as well as the Figure 4B and 4C in the 
main text), the LH language fROIs are similar in their sensitivity to different linguistic features 
(e.g., all fROIs are more sensitive to grammaticality and plausibility than valence). The RH 
fROIs generally exhibit lower correlations with sentence properties than the LH fROIs. In 
addition, we observe a clear difference between the LH and RH language fROIs in that the RH 
language fROIs, but not LH language fROIs, show positive correlations with the “Mental states” 
and “Arousal” features: sentences with content related to mental states and/or with arousing 
content elicit higher responses in all RH language fROIs (most pronounced for the RH IFGorb 
and the RH AntTemp fROIs). 
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SI Figure 21A. Modulation of language fROIs’ responses by sentence properties.  
Correlation of n=10 language fROIs’ (5 in the LH, 5 in the RH) responses (rows) with 11 sentence 
properties (columns) for n=1,000 baseline sentences (averaged across n=5 train and n=5 evaluation 
participants).  
 
Next, we quantified the correlation between responses in n=28 anatomical Glasser parcels 36 
located in typically language-responsive areas and sentence properties for the n=1,000 baseline 
sentences. SI Figure 21B visualizes these correlations on the surface-inflated brain (negative 
correlations are shown in blue shades, correlations around 0 are not shown, and positive 
correlations are shown in orange and red shades). First, we note that the correlation 
magnitudes are substantially lower for the anatomically defined parcels compared to the 
functional ROIs (SI Figure 21A), to be expected given the inter-individual variability in the 

A)  Correlation of brain responses in individual language fROIs
      with sentence properties
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location of language regions (e.g., 61,87,88,37). Second, as evident from SI Figure 21B, the results 
for the anatomical parcels mirror the patterns observed for the functional language ROIs 
reported in Figure 5 in the main text and SI Figure 21A: namely, the RH fROIs generally exhibit 
lower correlations than the LH fROIs, and, in contrast to the LH fROIs, show positive 
correlations with the “Mental states” and “Arousal” predictors. 
 

 
SI Figure 21B. Modulation of anatomical parcels’ responses by sentence properties.  
Correlation of responses in n=28 anatomical Glasser parcels (18 in the LH, 10 in the RH) that are located 
in language-responsive areas with 11 sentence properties for n=1,000 baseline sentences (averaged 
across n=5 train and n=5 evaluation participants). To identify parcels in typical language-responsive 
areas, we identified parcels that overlapped by at least 25% of voxels with one of the five broad, 
anatomical LH language parcels (Methods; Definition of ROIs), as was done in Lipkin et al. 3, resulting in 
n=21 parcels in each hemisphere. The names of these Glasser parcels are reported in SI Figure 6D. We 
excluded 14 of the 42 Glasser parcels (3 in the LH, 11 in the RH) where the noise ceiling split-half 
reliability (SI 5B) overlapped with zero, which left 28 parcels. The correlation values for each parcel were 
projected to the surface and visualized on the surface-inflated MNI152 template brain. Negative 
correlations are shown in blue shades, correlations around 0 are not shown, and positive correlations are 
shown in orange and red shades. 
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SI 22: Behavioral experiments on sentence properties 

SI 22A: Participant exclusion criteria 
The following criteria were defined prior to the study. Participants were excluded based on: 
 
1. Native speaker status: Participants were excluded based on their native speaker status self 
report as well as the Prolific/mTurk language and location filters. 
2. Sentence completions: Participants were excluded if their sentence completions were 
ungrammatical, contained spelling errors (that were not obvious typos) or if the completions 
were deeply nonsensical.  
3. Average response time: Participants were excluded if the average response time per 
question was less than 3 seconds (i.e., for the survey that contained two questions, the 
threshold was 6 seconds).  
4. Lack of variance in ratings: Participants were excluded if they only used a total of 2 unique 
rating values (out of 7) for all items in the survey. In addition, for the 2-question “form and 
meaning” survey, participants were excluded if they always provided the same rating for two 
questions across all items. 
5. Correlation with other participants: Participants were excluded if the average Pearson 
correlation with the ratings of remaining participants fell below 2 standard deviations below the 
mean inter-participant correlation. The inter-participant correlated was computed by correlating 
a vector of responses for a given participant with the vector of responses for each of the 
remaining participants and taking the average of these pairwise correlation values. 
 

SI 22B: Sentence completion prompts 
Participants were instructed: “Please finish the following sentences:”. 
 
1. The garden that … 
2. When I was younger, I would often … 
3. The longer the workers protested, ... 
4. I could never have imagined that … 
5. Because Jane lived by herself, … 
6. The most difficult thing about the trip was that ... 
 

SI 22C: Experimental instructions and participants  

Form and meaning 

Instructions 

In this survey, you will be asked to rate 100 sentences. We would like you to rate each sentence 
for two features. 
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First, we want you to rate the sentence for whether it makes sense on a scale from 1 (does not 
make any sense) to 7 (makes perfect sense). For example, a sentence like “The father had to 
buy some new fishing equipment for his trip” makes sense, so you might rate it as a 6 or 7. In 
contrast, a sentence like “The window attacked an inflated red kitten after the long opera 
surfaced” does not really make any sense, so you might rate it as a 1 or 2. Some sentences 
may fall somewhere in between: for example, “The tired traveller sat down on the book to have 
a drink of silver” so you might rate them as a 3 or 4. 
 
Second, we want you to rate the sentence for how grammatical it is (how well it follows English 
grammar rules) on a scale from 1 (completely ungrammatical) to 7 (perfectly grammatical). For 
example, although the sentence “The window attacked an inflated red kitten after the long opera 
surfaced” does not make sense, it obeys grammatical rules, so you might rate this as a 6 or 7. 
In contrast, a sentence like “Red the inflated attacked opera window long after kitten surfaced 
an” does not obey grammatical rules, so you might rate it as a 1 or 2. Some sentences may fall 
somewhere in between: for example, “Father had to bought into some new fishing equipment for 
his trip” (here, there are some parts that are grammatical, but also some errors) so you might 
rate it as a 3 or 4.” 
 
Question phrasing for each item:  
- How much does the sentence make sense? 
- How grammatical is the sentence? 

 

Participants 

Participants were recruited using the Amazon Mechanical Turk (mTurk) crowd-sourcing 
platform. The study was restricted to “Mechanical Turk Masters” workers. For lists 8-20, we 
additionally restricted the study to workers with a HIT approval rate greater than or equal to 98% 
as well as “Location” set to US using the mTurk qualification filters. 400 participants took part in 
the experiment. 100 participants were excluded following pre-defined exclusion criteria (SI 21A), 
leaving 300 participants (75%). In particular, 33 participants were excluded because they listed 
a language other than English as their native language, 32 participants were excluded based on 
sentence completions, 3 participants were excluded based on their average response times, 0 
participants were excluded based on the lack of rating variance, and 32 participants were 
excluded based on a low correlation with the remaining participants. 
The experiment took 25.01 minutes, on average (SD=3.58). Each item was rated by 10-18 
participants (15 participants on average, SD=2.60). The average inter-participant Pearson 
correlation, computed by correlating a vector of responses for a given participant with the vector 
of responses for each of the remaining participants and taking the average of these pairwise 
correlation values, was 0.84 (SD=0.03) for the sense rating and 0.74 (SD=0.04) for the 
grammaticality rating.  
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Mental states 

Instructions 

In this survey, you will be asked to read and evaluate 100 sentences. We would like you to rate 
each sentence according to how much it made you think of other people’s experiences, 
thoughts, beliefs, desires, and/or emotions on a scale from 1 (not at all) to 7 (very much). 
 
For example, sentences like “The woman wondered what made him jealous.” or “I was so angry 
that I hit the door.” have meanings that are related to other people’s states of mind and 
emotions so you might rate them as a 6 or a 7. In contrast, sentences like “A car drove into the 
parking garage.” or “Most of earth’s surface is covered by water.” do not, so you might rate them 
as a 1 or a 2. 
 
Question phrasing for each item:  
- How much does the sentence make you think of other people’s experiences, thoughts, 

beliefs, desires, and/or emotions? 
 
 
The Prolific crowdsourcing platform was used to recruit participants for the remaining n=8 
surveys. 

Participants 

Participants were asked to rate each sentence (on a scale from 1 to 7) according to how much it 
made them think of other people’s experiences, thoughts, beliefs, desires, and/or emotions (1: 
not at all, 7: very much). 
400 participants took part in the experiment. 83 participants were excluded following pre-defined 
exclusion criteria, leaving 317 participants (79.25%). In particular, 32 participants were excluded 
because they listed a language other than English as their native language, 31 participants were 
excluded based on sentence completions, 1 participant were excluded based on their average 
response times, 1 participant was excluded based on the lack of rating variance, and 18 
participants were excluded based on a low correlation with the remaining participants. 
The experiment took 15.73 minutes, on average (SD=2.58). Each item was rated by 14-19 
participants (15.85 participants on average, SD=1.57). The average inter-participant Pearson 
correlation was 0.50 (SD=0.06). 
 

Physical objects 

Instructions 

In this survey, you will be asked to rate 100 sentences. We would like you to rate each sentence 
according to how much it made you think of physical objects and/or physical causal 
interactions on a scale from 1 (not at all) to 7 (very much). 
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For example, sentences like “A few rows of bookshelves came tumbling down.” or “There were 
several large boxes on the floor.” have meanings that are related to physical objects and/or 
physical causal interactions, so you might rate them as a 6 or a 7. In contrast, sentences like 
“You are very attentive and curious.” or “The US justice system consists of three branches of 
government.” do not, so you might rate them as a 1 or a 2. 
 
Question phrasing for each item:   
- How much does the sentence make you think of physical objects and/or physical causal 

interactions? 
 

Participants 

Participants were asked to rate each sentence (on a scale from 1 to 7) according to how much it 
made them think of physical objects and/or physical causal interactions (1: not at all, 7: very 
much). 
400 participants took part in the experiment. 97 participants were excluded following pre-defined 
exclusion criteria, leaving 303 participants (75.75%). In particular, 22 participants were excluded 
because they listed a language other than English as their native language, 52 participants were 
excluded based on sentence completions, 5 participants were excluded based on their average 
response times, 1 participant was excluded based on the lack of rating variance, and 17 
participants were excluded based on a low correlation with the remaining participants. 
The experiment took 13.78 minutes, on average (SD=2.12). Each item was rated by 13-18 
participants (15.15 participants on average, SD=1.39). The average inter-participant Pearson 
correlation was 0.55 (SD=0.10). 
 

Places 

Instructions 

In this survey, you will be asked to rate 100 sentences. We would like you to rate each sentence 
according to how much it made you think of places, natural scenes and/or environments 
on a scale from 1 (not at all) to 7 (very much). 
 
For example, sentences like “There are several tall trees in the backyard.” or “They walked to 
the end of the hallway.” have meanings that are related to places, natural scenes and/or 
environments, so you might rate them as a 6 or a 7. In contrast, sentences like “You are very 
attentive and curious.” or “Wool is a type of textile fiber.” do not, so you might rate them as a 1 
or a 2. 
 
Question phrasing for each item:  
- How much does the sentence make you think of places, natural scenes and/or 

environments? 
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Participants 

Participants were asked to rate each sentence (on a scale from 1 to 7) according to how much it 
made them think of places, natural scenes and/or environments (1: not at all, 7: very much). 
400 participants took part in the experiment. 95 participants were excluded following pre-defined 
exclusion criteria, leaving 305 participants (76.25%). In particular, 16 participants were excluded 
because they listed a language other than English as their native language, 51 participants were 
excluded based on sentence completions, 5 participants were excluded based on their average 
response times, 2 participants were excluded based on the lack of rating variance, and 21 
participants were excluded based on a low correlation with the remaining participants. 
The experiment took 12.74 minutes, on average (SD=2.26). Each item was rated by 12-19 
participants (15.25 participants on average, SD=1.94). The average inter-participant Pearson 
correlation was 0.59 (SD=0.08). 
 

Valence 

Instructions 

In this survey, you will be asked to rate 100 sentences. We would like you to rate each sentence 
according to how much it made you feel happy, pleased, content, and/or hopeful on a scale 
from 1 (not at all) to 7 (very much). 
 
For example, sentences like “The puppy snuggles on the couch.” or “I celebrated my birthday 
with my best friends.” have meanings that are pleasant and positive, so you might rate them as 
a 6 or a 7. In contrast, sentences like “The woman was about to vomit.” or “The murder took 
place around midnight.” do not, so you might rate them as a 1 or a 2. 
 
Question phrasing for each item:  
- How much does the sentence make you feel happy, pleased, content, and/or hopeful? 

 

Participants 

Participants were asked to rate each sentence (on a scale from 1 to 7) according to how much it 
made them feel happy, pleased, content, and/or hopeful (1: not at all, 7: very much). 
400 participants took part in the experiment. 90 participants were excluded following pre-defined 
exclusion criteria, leaving 310 participants (77.50%). In particular, 18 participants were excluded 
because they listed a language other than English as their native language, 48 participants were 
excluded based on sentence completions, 2 participants were excluded based on their average 
response times, 1 participant was excluded based on the lack of rating variance, and 21 
participants were excluded based on a low correlation with the remaining participants. 
The experiment took 13.98 minutes, on average (SD=2.09). Each item was rated by 12-19 
participants (15.50 participants on average, SD=2.06). The average inter-participant Pearson 
correlation was 0.54 (SD=0.07). 
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Arousal 

Instructions 

In this survey, you will be asked to rate 100 sentences. We would like you to rate each sentence 
according to how much it made you feel stimulated, excited, frenzied, wide-awake, and/or 
aroused on a scale from 1 (not at all) to 7 (very much). 
 
For example, sentences like “The rollercoaster had tight turns.” or “His brother slapped him in 
the face.” have meanings that are arousing, so you might rate them as a 6 or a 7. In contrast, 
sentences like “The trees were slowly swaying in the wind.” or “The woman was sleepy after 
meditating.” do not, so you might rate them as a 1 or a 2. 
 
Question phrasing for each item:  
- How much does the sentence make you feel stimulated, excited, frenzied, wide-awake, 

and/or aroused? 
 

Participants 

Participants were asked to rate each sentence (on a scale from 1 to 7) according to how much it 
made them feel stimulated, excited, frenzied, wide-awake, and/or aroused (1: not at all, 7: very 
much). 
400 participants took part in the experiment. 99 participants were excluded following pre-defined 
exclusion criteria, leaving 301 participants (75.25%). In particular, 29 participants were excluded 
because they listed a language other than English as their native language, 46 participants were 
excluded based on sentence completions, 1 participant was excluded based on their average 
response times, 6 participants were excluded based on the lack of rating variance, and 17 
participants were excluded based on a low correlation with the remaining participants. 
The experiment took 15.38 minutes, on average (SD=2.80). Each item was rated by 12-18 
participants (15.05 participants on average, SD=1.61). The average inter-participant Pearson 
correlation was 0.40 (SD=0.05). 
 

Imageability 

Instructions 

In this survey, you will be asked to rate 100 sentences. We would like you to rate each sentence 
according to how easy it is to visualize, or to form an image of the sentence’s meaning in 
your mind on a scale from 1 (not at all) to 7 (very much). 
 
For example, sentences like “The cup is filled with black coffee.” or “The girl looked up at the 
cloud-filled sky.” have meanings that bring to mind relevant images and are easy to visualize, so 
you might rate them as a 6 or a 7. In contrast, sentences like “It seems unlikely to happen.” or “I 
did not get the gist of the idea.” do not, so you might rate them as a 1 or a 2. 
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Question phrasing for each item:  
- How easy is the sentence to visualize, or to form an image of the sentence’s meaning in 

your mind? 
 

Participants 

Participants were asked to rate (on a scale from 1 to 7) how easy each sentence is to visualize, 
or to form an image of the sentence’s meaning in their mind (1: not at all, 7: very much). 
400 participants took part in the experiment. 105 participants were excluded following pre-
defined exclusion criteria, leaving 295 participants (73.75%). In particular, 26 participants were 
excluded because they listed a language other than English as their native language, 58 
participants were excluded based on sentence completions, 2 participants were excluded based 
on their average response times, 1 participant was excluded based on the lack of rating 
variance, and 18 participants were excluded based on a low correlation with the remaining 
participants. 
The experiment took 14.64 minutes, on average (SD=2.12). Each item was rated by 12-19 
participants (14.75 participants on average, SD=1.59). The average inter-participant Pearson 
correlation was 0.63 (SD=0.04). 
 

Perceived general frequency 

Instructions 

In this survey, you will be asked to rate 100 sentences. We would like you to rate each sentence 
according to how likely you think you are to encounter this sentence on a scale from 1 (not 
at all likely) to 7 (very likely).  
 
For example, sentences like “I want my coffee black, please.” or “What time is our meeting?” are 
quite common, so you might rate them as a 6 or a 7. In contrast, sentences like “The man 
measures the height of the tripod.” or “Five prophets from Egypt were present.” are not, so you 
might rate them as a 1 or a 2. 
 
Question phrasing for each item:  
- How likely do you think you are to encounter this sentence? 

 

Participants 

Participants were asked to rate each sentence (on a scale from 1 to 7) according to how likely 
they think they are to encounter the sentence (1: not at all likely, 7: very likely). 
400 participants took part in the experiment. 85 participants were excluded following pre-defined 
exclusion criteria, leaving 315 participants (78.75%). In particular, 31 participants were excluded 
because they listed a language other than English as their native language, 31 participants were 
excluded based on sentence completions, 1 participant was excluded based on their average 
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response times, 0 participants were excluded based on the lack of rating variance, and 22 
participants were excluded based on a low correlation with the remaining participants. 
The experiment took 14.27 minutes, on average (SD=2.23). Each item was rated by 13-19 
participants (15.75 participants on average, SD=1.55). The average inter-participant Pearson 
correlation was 0.72 (SD=0.05). 
 

Perceived conversational frequency 

Instructions 
In this survey, you will be asked to rate 100 sentences. We would like you to rate each sentence 
according to how likely you think it is to occur in a conversation between people on a 
scale from 1 (not at all likely) to 7 (very likely). 
 
For example, sentences like “I love your shoes!” or “What did you guys do last night?.” are likely 
to be said during a conversation, so you might rate them as a 6 or a 7. In contrast, sentences 
like “Hemoglobin is a protein that carries oxygen.” or “Land owners do not obtain any tax treaty.” 
are not and instead are more likely to occur in written texts, so you might rate them as a 1 or a 
2. 
 
Question phrasing for each item:  
- How likely do you think the sentence is to occur in a conversation between people? 

 

Participants 

Participants were asked to rate each sentence (on a scale from 1 to 7) according to how likely 
they think the sentence is to occur in a conversation between people (1: not at all, 7: very 
much). 
400 participants took part in the experiment. 105 participants were excluded following pre-
defined exclusion criteria, leaving 295 participants (73.75%). In particular, 37 participants were 
excluded because they listed a language other than English as their native language, 48 
participants were excluded based on sentence completions, 3 participants were excluded based 
on their average response times, 1 participant was excluded based on the lack of rating 
variance, and 16 participants were excluded based on a low correlation with the remaining 
participants. 
The experiment took 13.47 minutes, on average (SD=1.39). Each item was rated by 12-18 
participants (14.75 participants on average, SD=1.68). The average inter-participant Pearson 
correlation was 0.64 (SD=0.05). 
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SI 23: Statistical significance of the effect of sentence properties on the 
BOLD response 
The following section contains statistics accompanying Results; Sentence complexity modulates 
language network responses in the main text. Section SI 23A contains full model formulae along 
with model fit statistics, while section SI 23B contains statistics comparing pairs of models. 
BOLD response data met assumptions of normality (tested via Kolmogorov-Smirnov test). 
 

SI 23A: Individual linear mixed effect models  

Log probability 
Linear mixed effect formula: 
BOLD response ~ log_probability + (1 | sentence) + run_within_session + trial_within_run 
 

Model term        Coefficient            SE            t            p            df            

intercept            -0.333*** 0.044 -7.625 <0.001 9982  

log_probability            -0.085*** 0.009 -9.937 <0.001 9982  

run_within_session            -0.002 0.002 -1.100 0.271 9982  

trial_within_run            -0.002*** 0.000 -4.809 <0.001 9982  

SD (Intercept 
item_id_factor)       

0.168  
 

 
 

 
 

 
  

SD (Observations)       0.629  
 

 
 

 
 

 
  

Num.Obs.            9988  
 

 
 

 
 

 
  

R2 Marg.            0.018  
 

 
 

 
 

 
  

R2 Cond.            0.083  
 

 
 

 
 

 
  

AIC            19658.6  
 

 
 

 
 

 
  

BIC            19701.9  
 

 
 

 
 

 
  

RMSE        0.62  
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Log probability and plausibility 
Linear mixed effect formula: 
BOLD response ~ log_probability + plausibility + (1 | sentence) + run_within_session + 
trial_within_run 
 

Model term      Coefficient          SE          t          p          df          

intercept          0.553*** 0.106 5.210 <0.001 9981  
log_probability          -0.044*** 0.009 -4.693 <0.001 9981  

plausibility       -0.108*** 0.012 -9.086 <0.001 9981  

run_within_session          -0.003 0.002 -1.139 0.255 9981  

trial_within_run          -0.002*** 0.000 -4.711 <0.001 9981  

SD (Intercept 
item_id_factor)     

0.151  
 

 
 

 
 

 
  

SD (Observations)     0.629  
 

 
 

 
 

 
  

Num.Obs.          9988  
 

 
 

 
 

 
  

R2 Marg.          0.030  
 

 
 

 
 

 
  

R2 Cond.          0.083  
 

 
 

 
 

 
  

AIC          19588.5  
 

 
 

 
 

 
  

BIC          19638.9  
 

 
 

 
 

 
  

RMSE      0.62  
 

 
 

 
 

 
  

 

Log probability, plausibility, and grammaticality 
Linear mixed effect formula: 
BOLD response ~ log_probability + plausibility + grammaticality + (1 | sentence) + 
run_within_session + trial_within_run 
 

Model term      Coefficient          SE          t          p          df          

intercept          0.0672*** 0.111 6.081 <0.001 9980  
log_probability          -0.042*** 0.009 -4.476 <0.001 9980  
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plausibility       -0.068*** 0.016 -4.246 <0.001 9980  

grammaticality -0.058*** 0.016 -3.613 <0.001 9980 

run_within_session          -0.003 0.002 -1.151 0.250 9980  

trial_within_run          -0.002*** 0.000 -4.700 <0.001 9980  

SD (Intercept 
item_id_factor)     

0.149  
 

 
 

 
 

 
  

SD (Observations)     0.629   
  

  

Num.Obs.          9988  
 

 
 

 
 

 
  

R2 Marg.          0.032  
 

 
 

 
 

 
  

R2 Cond.          0.083  
 

 
 

 
 

 
  

AIC          19584.0  
 

 
 

 
 

 
  

BIC          19641.6  
 

 
 

 
 

 
  

RMSE      0.62  
 

 
 

 
 

 
  

 

Log probability and grammaticality 
Linear mixed effect formula: 
BOLD response ~ log_probability + grammaticality +  (1 | sentence) + run_within_session + 
trial_within_run 
 

Model term Coefficient     SE     t     p     df     

intercept     0.466***    0.100    4.651    <0.001    9981    
log_probability     -0.054***    0.009    -6.020    <0.001    9981    

grammaticality  -0.104** 0.012 -8.790 <0.001 9981 

run_within_session     -0.003 0.002 -1.146 0.252 9981 

trial_within_run     -0.002*** 0.000 -4.727 <0.001 9981 
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SD (Intercept 
item_id_factor)    

0.152                

SD (Observations)    0.629                    

Num.Obs.     9988                    
R2 Marg.     0.029                    
R2 Cond.     0.083                    

AIC     19593.4                   
BIC     19643.8                    

RMSE 0.62     
 

Log probability and mental states 
Linear mixed effect formula: 
BOLD response ~ log_probability + mental_states + (1 | sentence) + run_within_session + 
trial_within_run 
 

Model term   Coefficient       SE       t       p       df       

intercept       -0.361*** 0.055 -6.521 <0.001 9981  
log_probability       -0.087*** 0.009 -9.861 <0.001 9981  

mental_states    0.005 0.006 0.829 0.407 9981  

run_within_session       -0.002 0.002 -1.094 0.274 9981  

trial_within_run       -0.002*** 0.000 -4.813 <0.001 9981  

SD (Intercept 
item_id_factor)  

0.167          

SD (Observations)  0.629      

Num.Obs.       9988                      
R2 Marg.       0.018                            
R2 Cond.       0.083                              

AIC       19668.2                            
BIC       19718.6                              

RMSE   0.62               
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Log probability and physical objects 
Linear mixed effect formula: 
BOLD response ~ log_probability + physical_objects +  (1 | sentence) + run_within_session + 
trial_within_run 
 

Model term    Coefficient        SE        t        p        df        

intercept        -0.239*** 0.044 -5.496 <0.001 9981 
log_probability        -0.095*** 0.008 -11.341 <0.001 9981 

physical_objects     -0.047*** 0.005 -8.780 <0.001 9981 

run_within_session        -0.002 0.002 -1.007 0.314 9981 

trial_within_run        -0.002*** 0.000 -4.708 <0.001 9981 

SD (Intercept 
item_id_factor)   

0.152  
 

 
 

 
 

 
 

SD (Observations)   0.629  
 

 
 

 
 

 
 

Num.Obs.        9988  
 

 
 

 
 

 
 

R2 Marg.        0.029  
 

 
 

 
 

 
 

R2 Cond.        0.083  
 

 
 

 
 

 
 

AIC        19595.1  
 

 
 

 
 

 
 

BIC        19645.6  
 

 
 

 
 

 
 

RMSE    0.62  
 

 
 

 
 

 
 

 

Log probability and places 
Linear mixed effect formula: 
BOLD response ~ log_probability + places +  (1 | sentence) + run_within_session + 
trial_within_run 
 

Model term     Coefficient         SE         t         p         df         

intercept         -0.240*** 0.044 -5.473 <0.001 9981 
log_probability         -0.090*** 0.008 -10.742 <0.001 9981 
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places      -0.053*** 0.007 -8.095 <0.001 9981 

run_within_session         -0.003 0.002 -1.143 0.253 9981 

trial_within_run         -0.002*** 0.000 -4.673 <0.001 9981 

SD (Intercept 
item_id_factor)    

0.155  
 

 
 

 
 

 
 

SD (Observations)    0.629  
 

 
 

 
 

 
 

Num.Obs.         9988  
 

 
 

 
 

 
 

R2 Marg.         0.027  
 

 
 

 
 

 
 

R2 Cond.         0.083  
 

 
 

 
 

 
 

AIC         19605.5  
 

 
 

 
 

 
 

BIC         19655.9  
 

 
 

 
 

 
 

RMSE     0.62  
 

 
 

 
 

 
 

 

Log probability and valence 

Linear mixed effect formula: 
BOLD response ~ log_probability + valence +  (1 | sentence) + run_within_session + 
trial_within_run 
 

Model term       Coefficient           SE           t           p           df           

intercept           -0.239*** 0.049 -4.872 <0.001 9981 
log_probability           -0.082*** 0.009 -9.627 <0.001 9981 

valence        -0.026*** 0.006 -4.083 <0.001 9981 

run_within_session           -0.003 0.002 -1.121 0.263 9981 

trial_within_run           -0.002*** 0.000 -4.829 <0.001 9981 

SD (Intercept 
item_id_factor)      

0.164  
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SD (Observations)      0.629  
 

 
 

 
 

 
 

Num.Obs.           9988  
 

 
 

 
 

 
 

R2 Marg.           0.020  
 

 
 

 
 

 
 

R2 Cond.           0.083  
 

 
 

 
 

 
 

AIC           19652.4  
 

 
 

 
 

 
 

BIC           19702.8  
 

 
 

 
 

 
 

RMSE       0.62  
 

 
 

 
 

 
 

 

Log probability and arousal 
Linear mixed effect formula: 
BOLD response ~ log_probability + arousal +  (1 | sentence) + run_within_session + 
trial_within_run 
 

Model term  Coefficient  SE  t  p  df  
intercept  -0.347*** 0.054 -6.369 <0.001 9981 

log_probability  -0.086*** 0.009 -9.896 <0.001 9981 
arousal  0.004 0.009 0.429 0.668 9981 

run_within_session  -0.002 0.002 -1.097 0.273 9981 
trial_within_run  -0.002*** 0.000 -4.811 <0.001 9981 

SD (Intercept 
item_id_factor)  

0.168     

SD (Observations) 0.629     
Num.Obs.  9988     
R2 Marg.  0.018     
R2 Cond.  0.083     

AIC  19668.1     
BIC  19718.6     

RMSE 0.62     

+p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001 
 

Log probability and imageability 
Linear mixed effect formula: 
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BOLD response ~ log_probability + imageability  +  (1 | sentence) + run_within_session + 
trial_within_run 
 

Model term  Coefficient      SE      t      p      df      

intercept      -0.094+     0.048     -1.941 0.052 9981 
log_probability      -0.081*** 0.008 -9.798 <0.001 9981 

imageability   -0.058*** 0.006 -9.874 <0.001 9981 

run_within_session      -0.002 0.002 -1.034 0.301 9981 

trial_within_run      -0.002*** 0.000 -4.744 <0.001 9981 

SD (Intercept 
item_id_factor) 

0.149     

SD (Observations) 0.629     

Num.Obs.      9988                  
R2 Marg.      0.032                       
R2 Cond.      0.083                         

AIC      19576.2                       
BIC      19626.7                         

RMSE  0.62          
 

Log probability and perceived frequency 
Linear mixed effect formula: 
BOLD response ~ log_probability + general_frequency +  (1 | sentence) + run_within_session + 
trial_within_run 
 

Model term    Coefficient    SE    t    p    df    

intercept    0.264***   0.073   3.642   <0.001   9981   
log_probability    -0.028***   0.010   -2.844   <0.004   9981   

general_frequency -0.075***   0.007   -10.071   <0.001   9981   

run_within_session    -0.003   0.002   -1.128   0.259   9981   

trial_within_run    -0.002***   0.000   -4.706   <0.001   9981   

SD (Intercept 
item_id_factor)   

0.148           
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SD (Observations)   0.629               

Num.Obs.    9988               
R2 Marg.    0.032               
R2 Cond.    0.083               

AIC    19572.1               
BIC    19622.6               

RMSE   0.62              

 
 

Log probability and perceived conversational frequency 
Linear mixed effect formula: 
BOLD response ~ log_probability + conversational_frequency +  (1 | sentence) + 
run_within_session + trial_within_run 
 

Model term   Coefficient   SE   t   p   df   
intercept   0.039  0.070  0.557  0.578  9981  

log_probability   -0.051***  0.010  -5.150  <0.001  9981  
conversational_frequency   -0.048***  0.007  -6.742  <0.001  9981  

run_within_session   -0.003  0.002  -1.120  0.263  9981  

trial_within_run   -0.002***  0.000  -4.765  <0.001  9981  
SD (Intercept item_id_factor)  0.159      

SD (Observations)  0.629          

Num.Obs.   9988          
R2 Marg.   0.025          
R2 Cond.   0.083          

AIC   19624.3          
BIC   19764.8          

RMSE  0.62         

 

SI 23B: Comparison of pairs of linear mixed effect models  

Grammaticality versus plausibility and grammaticality 
Note that log probability was included in both of these models as a base predictor. 
 
Model 1: BOLD response ~ log_probability + grammaticality + (1 | sentence) + 
run_within_session + trial_within_run 
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Model 2: BOLD response ~ log_probability + plausibility + grammaticality + (1 | sentence) + 
run_within_session + trial_within_run 
 

npar AIC BIC logLik deviance Chisq Df Pr(>Chisq) 

7 19 546.78 19 597.35 -9 766.391 19 532.78 na na na 

8 19 530.92 19 588.59 -9 757.459 19 514.92 17.86499 1 0.0000237 

 

Plausibility versus plausibility and grammaticality 

Note that log probability was included in both of these models as a base predictor. 
 
Model 1: BOLD response ~ log_probability + plausibility + (1 | sentence) + run_within_session + 
trial_within_run 
 
Model 2: BOLD response ~ log_probability + plausibility + grammaticality + (1 | sentence) + 
run_within_session + trial_within_run 
 

npar AIC BIC logLik deviance Chisq Df Pr(>Chisq) 

7 19 541.89 19 592.35 -9 763.944 19 527.89 na na na 

8 19 530.92 19 588.59 -9 757.459 19 514.92 12.97034 1 0.00031647 

 

Log probability versus mental states 

Model 1: BOLD response ~ log_probability + (1 | sentence) + run_within_session + 
trial_within_run 
 
Model 2: BOLD response ~ log_probability + mental_states + (1 | sentence) + 
run_within_session + trial_within_run 
 

npar AIC BIC logLik deviance Chisq Df Pr(>Chisq) 

6 19 619.22 19 662.47 -9 803.609 19 607.22 na na na 

7 19 620.53 19 671.00 -9 803.266 19 606.53 0.6870964 1 0.4071538 

 

Log probability versus physical objects 

Model 1: BOLD response ~ log_probability + (1 | sentence) + run_within_session + 
trial_within_run 
 
Model 2: BOLD response ~ log_probability + physical_objects + (1 | sentence) + 
run_within_session + trial_within_run 
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npar AIC BIC logLik deviance Chisq Df Pr(>Chisq) 

6 19 619.22 19 662.47 -9 803.609 19 607.22 na na na 

7 19 546.96 19 597.42 -9 766.479 19 532.96 74.26132 1 0 

Log probability versus places 

Model 1: BOLD response ~ log_probability + (1 | sentence) + run_within_session + 
trial_within_run 
 
Model 2: BOLD response ~ log_probability + places + (1 | sentence) + run_within_session + 
trial_within_run 
 

npar AIC BIC logLik deviance Chisq Df Pr(>Chisq) 

6 19 619.22 19 662.47 -9 803.609 19 607.22 na na na 

7 19 557.75 19 608.21 -9 771.873 19 543.75 63.47272 1 0 

 

Log probability versus valence 

Model 1: BOLD response ~ log_probability + (1 | sentence) + run_within_session + 
trial_within_run 
 
Model 2: BOLD response ~ log_probability + places + (1 | sentence) + run_within_session + 
trial_within_run 
 

npar AIC BIC logLik deviance Chisq Df Pr(>Chisq) 

6 19 619.22 19 662.47 -9 803.609 19 607.22 na na na 

7 19 604.69 19 655.15 -9 795.343 19 590.69 16.53291 1 0.000047813 

 

Log probability versus arousal 

Model 1: BOLD response ~ log_probability + (1 | sentence) + run_within_session + 
trial_within_run 
 
Model 2: BOLD response ~ log_probability + arousal + (1 | sentence) + run_within_session + 
trial_within_run 
 

npar AIC BIC logLik deviance Chisq Df Pr(>Chisq) 

6 19 619.22 19 662.47 -9 803.609 19 607.22 na na na 

7 19 621.03 19 671.50 -9 803.517 19 607.03 0.1842934 1 0.6677092 
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Log probability versus imageability 

Model 1: BOLD response ~ log_probability + (1 | sentence) + run_within_session + 
trial_within_run 
 
Model 2: BOLD response ~ log_probability + imageability + (1 | sentence) + run_within_session 
+ trial_within_run 
 

npar AIC BIC logLik deviance Chisq Df Pr(>Chisq) 

6 19 619.22 19 662.47 -9 803.609 19 607.22 na na na 

7 19 528.19 19 578.65 -9 757.094 19 514.19 93.03145 1 0 

 

Log probability versus perceived frequency 

Model 1: BOLD response ~ log_probability + (1 | sentence) + run_within_session + 
trial_within_run 
 
Model 2: BOLD response ~ log_probability + general_frequency + (1 | sentence) + 
run_within_session + trial_within_run 
 

npar AIC BIC logLik deviance Chisq Df Pr(>Chisq) 

6 19 619.22 19 662.47 -9 803.609 19 607.22 na na na 

7 19 524.59 19 575.05 -9 755.295 19 510.59 96.62785 1 0 

 

Log probability versus perceived conversational frequency 

Model 1: BOLD response ~ log_probability + (1 | sentence) + run_within_session + 
trial_within_run 
 
Model 2: BOLD response ~ log_probability + conversational_frequency + (1 | sentence) + 
run_within_session + trial_within_run 
 
 

npar AIC BIC logLik deviance Chisq Df Pr(>Chisq) 

6 19 619.22 19 662.47 -9 803.609 19 607.22 na na na 

7 19 576.76 19 627.22 -9 781.380 19 562.76 44.45788 1 0 
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SI 24: Statistical differences between the BOLD response for pairs of 
sentence property bins 
The following section contains statistics accompanying the inset plots in Figure 5C in the main 
text results section Sentence complexity modulates language network responses (the inset plots 
in Figure 5C show the average brain response for each sentence property grouped into six 
uniformly sized bins). SI Figure 24 shows the p-values from independent samples t-tests 
between each pair of bins, for each sentence property.  
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SI Figure 24. Statistical differences between the BOLD response for pairs of sentence property 
bins for each of 11 sentence properties.  
Plots show the p-value from independent samples t-tests (two-sided) between each pair of sentence 
property bins. Mirroring the bin inset plots (Figure 5C, main text), bins containing less than 1% of the 
data, i.e., 20 responses, were omitted from the analyses. We performed false discovery rate correction 
via the Benjamini-Hochberg procedure for the comparisons within each sentence property. We show 
these corrected p-values as a grid containing the unique pairwise comparisons. 
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