
Understanding Computer Programs:
Computational and Cognitive Perspectives

by

Shashank Srikant

B. Tech., National Institute of Technology Kurukshetra (2011)
S.M., Massachusetts Institute of Technology (2020)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2023

© 2023 Shashank Srikant. All rights reserved.

The author hereby grants to MIT a nonexclusive, worldwide, irrevocable, royalty-free
license to exercise any and all rights under copyright, including to reproduce,

preserve, distribute and publicly display copies of the thesis, or release the thesis
under an open-access license.

Authored by: Shashank Srikant
Department of Electrical Engineering and Computer Science
May 15, 2023

Certified by: Una-May O’Reilly
Principal Research Scientist of the Computer Science and Artificial
Intelligence Laboratory
Thesis Supervisor

Accepted by: Leslie Kolodziejski
Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

Understanding Computer Programs:

Computational and Cognitive Perspectives

by

Shashank Srikant

Submitted to the Department of Electrical Engineering and Computer Science
on May 15, 2023, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

In this thesis, I study the understanding of computer programs (code) from two per-
spectives: computational and cognitive. I ask what the human bases of understanding
code are, and attempt to determine whether computational models trained on code
corpora (also known as code models) share similar bases.

From the computational perspective, I start by proposing a framework to test the
robustness of the information learned by code models (chapter 2). This establishes a
baseline measure for how well models comprehend code. I then describe techniques for
improving the robustness of these models while retaining their accuracy (chapter 3). I
then propose a way forward for code models to learn and reason about concurrent
programs from their execution traces (chapter 4). In doing so, I also demonstrate the
limitations of heuristics developed over the past four decades for detecting data races
in concurrent programs, highlighting the need for evaluating these heuristics further.

In the cognitive aspect, I study how our brains comprehend code using fMRI to
analyze programmers’ brains (chapter 5). I show that our brains encode information
about comprehended code similar to how code models encode that information (chap-
ter 6). I show how the framework I develop in chapter 2 can be used to automatically
generate stimuli for experiments in psycholinguistics and cognitive neuroscience (chap-
ter 7), which can improve our understanding of how our minds and brains comprehend
programs. Finally, I propose a probabilistic framework which models the mechanism
of finding important parts of a program when comprehending it (chapter 8).

Thesis Supervisor: Una-May O’Reilly
Title: Principal Research Scientist of the Computer Science and Artificial Intelligence
Laboratory

3

Acknowledgments

The research presented in this thesis was done under the mentorship of Dr. Una-May

O’Reilly. In Una-May, I found an advisor who cared deeply about, and shared a

fascination for, programs and understanding them. She showed great confidence

in me when I wanted to address the idea of program understanding from diverse

perspectives–ML, cognitive neuroscience, and program analysis. Her enthusiasm in

understanding and refining with me the questions I investigate in this thesis has been

infectious and inspiring. Thank you Una-May for being the inspiring mentor and

human being you are. All of the research presented in this thesis was conducted in

collaboration with her.

A significant portion of my work in cognitive neuroscience and code model rep-

resentations that I present in this thesis was done in collaboration with the labs of

professors Ev Fedorenko and Sijia Liu. A cold-email to Ev to study the brain bases of

code understanding in 2018 and a joint-proposal to explore the robustness of code

models with Sijia in 2019 started my collaboration. Their relentless pursuit of their

topics of expertise, their availability to engage with me on various (often half-baked)

ideas I presented over the years, and their warmth and kindness in readily accepting

me as a collaborator is something I am grateful for, and that I hopefully can emulate.

I thank Ev, Sijia, and Prof. Armando Solar-Lezama for the helpful feedback they

provided as my thesis readers. Armando’s course on program analysis was not only

my first course at MIT but also the most influential, as it helped me appreciate

the program analysis perspective to some of the solutions presented in this thesis.

Thank you Amanda Abrams for patiently working with me on all my thesis-related

administrative work, and thanks Nicole Hoffman, Janet Fischer, Alicia Duarte, and

Prof. Leslie Kolodziejski, Prof. Berthold Horn for your diligence and care in making

the administrative processes a breeze to navigate through.

I had the pleasure of working with, and I am thankful to, the following excellent

collaborators who have contributed to the work I present in this thesis. I also mention

in brief the origin stories for each of these collaborations.

5

• Chapter 2 was in collaboration with Sijia Liu, Tamara Mitrovska, Shiyu Chang,

Quanfu Fan, and Gaoyuan Zhang. Thank you David Cox for the helpful discussions.

The chapter, in full, is a reprint of the material as it appears in Srikant et al. [2021],

published at ICLR 2021.

The work was a result of a joint-proposal in 2020 between Sijia and ALFA, and which

began my collaboration with Sijia’s group.

• Chapter 3 was in collaboration with Jinghan Jia, Sijia Liu, Tamara Mitrovska,

and Chuang Gan. Jinghan contributed equally with me as a primary author, who also

diligently handled the fairly involved implementation details. The chapter, in full, is a

reprint of the material as it appears in Jia et al. [2022], published at SANER 2023.

• Chapter 4. was in collaboration with Teodor Rares Begu, Malavika Samak, and

Michael Wang. Specifically, Section 4.3 in the chapter refers to a thesis I mentored,

authored by Teodor Rares Begu [Rares Begu, 2020]. Section 4.4, in full, is a re-print

of the material as it appears in Wang et al. [2023] published at SOAP 2023 at PLDI.

I was inspired to study the problem of concurrency bug detection after having unsuc-

cessfully addressed it in my S.M. thesis [Srikant, 2020]. As a side project, I proposed

using a toy language to simulate concurrent threads and assess the limitations of

various ML models. Teodor led the project, refining and implementing it in 2020.

Soon after, my work on min-max optimization informed the theoretical formulation I

propose in this chapter. The problem surfaced again when I reached out to Malavika

Samak in December 2021, during a talk by Prof. Michael Pradel, to learn more about

her work. She too had coincidentally considered using a data-driven approach to

reason about concurrent programs. We then scoped the problem, and realized the lack

of any labeled datasets. Michael Wang, who joined the ALFA group as a graduate

student then, joined this project, took charge, and developed the solution which came

to be RaceInjector.

• Chapter 5 was in collaboration with Anna Ivanova, Yotaro Sueoka, Hope Kean,

Riva Dhamala, Marina Bers, and Ev Fedorenko. Steve Shannon and Atsushi Takahashi

provided valuable support at the Martinos imaging center. This chapter is, in full, a

reprint of the arXiv report Srikant et al. [2023a], which in turn is a rewrite of Ivanova

6

et al. [2020], published at eLife 2020. The chapter informs the results of the eLife

work to a computer science audience; the original eLife work was written to primarily

inform a cognitive neuroscience audience.

A cold-email to Ev in September 2018 began this collaboration. Anna from Ev lab

had also serendipitously begun working on understanding the brain bases of code

comprehension in the week I emailed Ev. The neuroimaging perspective of program

understanding intrigued me from my days at Aspiring Minds. I even had conversations

about fMRI recordings with faculty in India before joining graduate school (see Chapter

1 for an excerpt). Serendipity ensured I went through with my desire to study this

problem.

• Chapter 6 was in collaboration with Benjamin Lipkin, Anna Ivanova and Ev

Fedorenko. Ben Lipkin contributed equally with me as a primary author in this work;

he played a central role in carefully analyzing all the data, which eventually ensured

the success of this project. The chapter, in full, is a reprint of the material as it

appears in Srikant et al. [2022], published at NeurIPS 2022.

• Chapter 7 was done with Greta Tuckute from Ev lab. It is, in full, a reprint

of the material as it appears in Srikant et al. [2023b], in submission at the time of

writing this thesis.

During a casual dinner conversation in December 2021, Greta introduced me to the

problem of stimuli generation, for which she was exploring alternate solutions at the

time. I repurposed the solution I present in chapter 2 to address the problem.

• Chapter 8. The push to explore behavioral responses to code comprehension

came from a growing sense of frustration. Around 2020, I grew jaded by the constant

stream of code models applied to software tasks willy-nilly. It seemed then that models

were being trained for the sake of it, without taking into account if programmers cared

for those tasks, and worse, likely ignoring more fundamental tasks that programmers

needed help with, such as reading others’ code. I decided to seek out startups and other

software product research groups (as opposed to the typical large research groups) in

this field which could offer me exposure and access to programmer behavior in the

software development process. I cold-emailed Stephen Magill in 2021, co-founder of

7

Muse Dev Inc (now acquired by Sonatype Inc.), in whose group I spent a summer

and tested some ideas on code comprehensibility prediction. I later developed other

ideas on this theme which came to be the work I present in this chapter. Ev later

introduced me to Prof. Yevgeni Berzak who was working on similar ideas. Thanks to

Prof. Daniel Jackson for sharing with me his thoughts on program understandability,

and David Darais for informing me of Stephen Magill’s group.

• Unpublished work. The following works were also related to the theme explored

in this thesis. With Tamara Mitrovska, then an undergraduate researcher, I pursued

some more challenging directions on probing code models for their understanding.

With Erik Hemberg, I proposed a way to use satisfiability modulo theory (SMT) to

detect loopholes that aid tax avoidance in contract law. We demonstrated success on

a small class of contract laws. This work demonstrates how symbolic approaches can

enhance machine comprehension of domain-specific languages, such as contract law,

which are generally considered inscrutable. With Stephen Magill at Sonatype Inc., I

analyzed ∼ 100K Java programs in production to test what makes a snippet of code

harder to understand. I had access to before-after snapshots of code reviews and fixes

for these programs, from which I learned patterns.

All of the research presented in this thesis was funded by a grant from the MIT-IBM

Watson AI lab. For this, I am very grateful to David Cox, Aude Oliva, and the lab.

Research I did during the summers of 2020 and 2021 was supported by the MIT-IBM

Watson AI lab and Stephen Magill’s team at Sonatype Inc. (previously Muse Dev Inc.)

respectively. The first year of my PhD was partially funded by the FinTech initiative at

CSAIL. MIT’s generous undergraduate research programs (Quest for Intelligence and

the MIT SuperUROP program) supported multiple superb undergraduate researchers

I worked with, including my collaborators Tamara (chapters 2, 3) and Teodor (chapter

4). My gratitude to all these sources for funding me and my collaborators.

I thank the following for their outstanding support with the computational resources

I needed for my experiments: John Cohn, Jessie Rosenberg, Christopher Laibinis, and

Luke Inglis from MIT-IBM AI lab and IBM Research; the ninjas at TIG, CSAIL -

Jonathan Proulx, Alex Closs, Garrett Wollman, and Shaohao Chen from BCS.

8

A significant portion of the work in this thesis is built on the effort of several

researchers—those who prepared and publicly released datasets, codebases and ML

models, those who put out helpful blogs and videos explaining their work, those who

thanklessly answered queries on public forums, and those who have diligently worked

on several important open source efforts such as Pytorch and Hugging Face. I thank

them all; I stand on the shoulders of such giants.

Kim Martineau, Rachel Gordon, Steven Nadis, Matt Busekroos, Jake Lambert,

Phil Arsenault, and Erin Underwood from CSAIL, MIT News and EmTech MIT

helped in communicating much of the work presented in this thesis to the public via

portals like MIT News, CSAIL spotlights, talks at EmTech, and posts on social media.

Several courses I took in computer science and cognitive science have shaped my

views on the topics I address in this thesis. Thanks especially to professors Armando

Solar-Lezama, Regina Barzilay, Nickolai Zeldovich, Frans Kaashoek, Nancy Kanwisher,

Pawan Sinha, Josh Tenenbaum, Ted Gibson, and Athulya Aravind for their inspiring

courses. They posed big-picture questions and constantly encouraged us to think

beyond.

It takes a village to raise a child. Some instilled a sense of rigor and curiosity

while others mentored me while I was finding my way into academia. Thanks to the

many inspiring teachers from my school; Prof. Jitender Chhabra – my undergraduate

advisor; Varun Aggarwal – my manager at Aspiring Minds; Sumit Gulwani, professors

Rupesh Nasre, Jitender Chhabra and Lav Varshney – my letter writers to graduate

school; Sumit for recommending a visit to the Microsoft Research India lab in 2017,

and to Bill Thies, Sriram Rajamani and Swami Manohar for being my hosts there

and talking to me about life after graduate school; professors Bogdan Vasilescu and

Jonathan Aldrich for being welcoming hosts at CMU in 2017. A special note of thanks

to Varun who patiently taught me to do rigorous research and eventually introduced

me to Una-May, and for setting up Aspiring Minds where I met excellent colleagues

to do fun research with.

Lastly, thanks to the many new friends I made during my stint here, and older ones

who kept in touch, many through long phone calls, all of whom ensured I remained in

9

high spirits. Cybersecurity, privacy, and GPT-4 can operate with reduced internet

data, so I will avoid mentioning them all. Michael Collins, previous flatmates, and

friends at Chateau ensured I had a comfortable stay. Multiple instructors ensured I

stayed physically healthy. Members of ALFA shared my enthusiasm for the outdoors,

finding good food spots, and having fun at work. Thank you all for the warm memories.

I am grateful to Una-May and Blake for their benevolent gesture of offering their

summer home to a few of us labmates when COVID was at its worst in the USA; they

set a very high bar for care and empathy. Thanks to my aunts and their families, who

made me a part of theirs during my stay here. Thanks to my parents for making me

who I am, and all my family for their support through the years and for visiting me

here. Thanks to my partner for always making me smile. Thanks also to the many

canine friends who kept me company through my stint here; they are too important

to remain anonymous: Kencha, Julie, Todd, Maisy, Talula, Zuko, Bucky, Luna, and

Alpha. Olivia, Lily, and Cascade make the list despite their feline forms.

This perhaps will be the most read page of my thesis. If I’ve missed mentioning

you, know that I’ll always appreciate all that you do.

10

Contents

1 Introduction 29

1.1 Puzzle 1 - Human intelligence tasks 29

1.2 Puzzle 2 - Programs and patterns . 33

1.3 Reconciling these puzzles - Questions that arise 34

1.4 Thesis map . 35

1.5 Software . 43

2 Testing the robustness of code model understanding using source

code modifications 45

2.1 Introduction . 45

2.2 Related Work . 48

2.3 Program Obfuscations as Adversarial Perturbations 49

2.4 Adversarial Program Generation via First-Order Optimization 53

2.5 Experiments & Results . 56

2.5.1 Experiments . 58

2.6 Conclusion . 61

3 Improving the robustness of code model understanding while retain-

ing model accuracy 63

3.1 Introduction . 63

3.1.1 Overview of proposed approach 65

3.1.2 Contributions . 65

3.2 Related work . 67

11

3.2.1 SSL for code . 67

3.2.2 Adversarial robustness of code models: Attacks & defenses . . 68

3.3 Preliminaries . 69

3.3.1 Code and obfuscation transformations 69

3.3.2 Problem statement . 70

3.4 Method . 71

3.4.1 Claw: CL with adversarial codes 72

3.4.2 SAT: Staggered adversarial training for fine-tuning 74

3.5 Experiment Setup . 76

3.6 Experiment Results . 79

3.6.1 Overall performance . 80

3.6.2 Why is Claw effective? A model landscape perspective 81

3.6.3 Interpretability of learned code representations 83

3.6.4 SAT enables generalization-robustness sweet spot 86

3.6.5 ClawSAT on a different architecture 87

3.6.6 Extended study to integrate SAT with ContraCode 87

3.6.7 Sensitivity of SAT to code transformation and attack strength

types. 88

3.7 Conclusion & Discussion . 89

4 Training code models to understand concurrent programs using

program execution traces 91

4.1 Introduction . 92

4.1.1 Background . 93

4.2 A theoretical formulation to learn data races 96

4.2.1 Problem formulation . 97

4.2.2 Implementation challenges . 98

4.3 Simulating data races to study the limits of ML models 99

4.3.1 Introduction . 99

4.3.2 Simulating data races - A toy language 100

12

4.3.3 Generalization properties which the generated dataset can test 101

4.3.4 Desirable capabilities of the learned models 102

4.3.5 Experiments and Results - A summary 103

4.4 First steps towards learning data races: Creating a labeled dataset . . 104

4.4.1 Method . 108

4.4.2 Results & Discussion . 111

4.4.3 Related work . 114

5 Program comprehension and the human brain 117

5.1 Introduction . 117

5.2 Related Work . 119

5.3 Background . 121

5.3.1 fMRI studies . 121

5.3.2 Regions of Interest (ROIs) . 122

5.4 Experiment Design . 123

5.4.1 Experiment workflow - An overview 123

5.4.2 Condition design . 124

5.4.3 fMRI tasks . 128

5.4.4 Locating fROIs and data analysis 128

5.5 Experiment Procedure . 130

5.6 Results . 131

5.7 Discussion . 138

5.8 Threats to validity . 141

6 Convergent representations of computer programs in humans and

code models 143

6.1 Introduction . 143

6.2 Related Work . 147

6.3 Background . 148

6.4 Brain and Model Representations . 150

6.4.1 Brain representations and decoding 150

13

6.4.2 Code properties . 152

6.4.3 Model representations and decoding. 153

6.5 Experiments & Results . 154

6.5.1 Experiment 1 - How well do the different brain systems encode

specific code properties? Do they encode the same properties? 155

6.5.2 Experiment 2 - Do brain systems encode additional code prop-

erties encoded by computational language models of code? . . 157

6.6 Discussion . 159

7 Goal-optimized linguistic stimuli for psycholinguistics and cognitive

neuroscience 163

7.1 Introduction . 163

7.2 Problem description . 166

7.3 Method . 167

7.3.1 Solution formulation . 169

7.4 Experiments & Results . 172

7.4.1 Counterfactual minimal-pair task 172

7.4.2 fMRI task . 176

7.5 Discussion . 179

8 Modeling the presence of beacons in program comprehension 181

8.1 Introduction . 181

8.2 Experiment Setup . 183

8.3 Results . 185

8.3.1 RQ 1. Do humans consistently identify beacons? 185

8.3.2 RQ 2. What are the predictors of beacons? 187

8.4 Related work . 193

9 Conclusion 195

9.1 Future work . 197

9.1.1 The role of cognitive neuroscience: path ahead 197

14

9.1.2 Applying results from neuroimaging studies to CS education

and pedagogy . 198

9.1.3 Establishing human performance for the better design of code

models . 200

9.1.4 A case for separate architectures? 201

9.1.5 Probing code models . 202

15

Chapter 1

Introduction

The central theme of this thesis is how we humans understand computer programs,

and how we can teach machines to understand programs the way we do. It stems

from two puzzling observations I made before starting graduate school, which were

the following.

1.1 Puzzle 1 - Human intelligence tasks

Before graduate school, I worked for a research group where we assessed and quantified

skills which signal employability in a labor market. Skill assessments had until then

largely been confined to objective tests (multiple-choice questions) because subjective

assessments (free-form responses) were harder to assess. Our group was one of the

first to view the problem of subjective assessments of skills as problems in computer

science. We demonstrated how many free-form response assessments can be cast as

problems in machine learning (ML) [Srikant et al., 2019]. Test-takers’ responses were

treated as data-points in a high dimensional space, from which we predicted their

true, latent, underlying score. We developed novel assessments for skills like spoken

English [Shashidhar et al., 2015a], written English [Shashidhar et al., 2015b, Unnam

et al., 2019], fine motor skills [Singh and Aggarwal, 2016] and situational judgement

[Stemler et al., 2016], in addition to domain-general skills like logic and quantitative

reasoning [Aggarwal et al., 2016].

29

One area that I was closely involved in was the assessment of computer programming

skills [Srikant and Aggarwal, 2014a, Singh et al., 2016, Takhar and Aggarwal, 2019].

We trained predictive models to look beyond the functional correctness of programs,

and assessed their partial correctness based on their semantic content. This helped

a common issue arising in program assessments: zero credit for a failed test-suite

despite having written a program that was almost what was expected. We successfully

demonstrated how to utilize corpus-level statistics to assess programs that match

those written by expert programmers.

As background, the notion of code models—language models or statistical models

trained on code corpora, was beginning to be put to test around the same time we

were developing our predictive models for assessing programs (circa 2013). Works

by Allamanis and Sutton [2013] and Raychev et al. [2015] demonstrated practical

applications like code summarization and variable renaming in Java and Javascript

respectively. The idea of using a corpus of programs to train language models and other

statistical models to ease developer workload was becoming mainstream. Allamanis

et al. [2018b] surveys subsequent works in this space.

To train our machine learning (ML) models on code, we were routinely annotating

ground truth labels for the programs in our corpus. This required experienced pro-

grammers evaluating a subset of programs in our corpus with a carefully constructed

rubric. In watching expert programmers perform this task, I made a puzzling observa-

tion: experts were needed to annotate even the simplest of programming tasks, and

irrespective of their expertise, they found annotation challenging and time consuming.

This was in contrast to domains like speech, images, and text understanding, in which

most tasks which are hard to describe using algorithms can be quite easily done by

non-experts, essentially invoking their innate human intelligence. Examples of such

tasks include identifying objects in an image or identifying inarticulate speech or text

samples. Amazon’s Mechanical Turk [Paolacci et al., 2010], a popular crowdsourc-

ing platform, uses the term human intelligence tasks (HIT) to describe such tasks.

Strangely, understanding and annotating programs were never HITs, even for the best,

expert programmers. Any one of the following explanations possibly justifies this

30

observation.

• The time the human race has been using and inventing programming languages is

much less than the time the human race has learned and acquired skills like natural

language, vision, and speech. It is hence possible that there exist dedicated brain

regions for processing language, vision, and speech while none exist for programming

languages, thus requiring us more time to process programs.

• Experience could be another factor. A typical adult is exposed to many more

years of language, vision, and speech than a programming language in their lifetime.

Perhaps a child who is exposed to a programming language as its first language will

process programs as easily as adults process natural languages.

• It is possible that the nature of programming models and environments offered by

different languages contribute to the ease with which we understand programs. For

instance, visual learners may find web mark-up languages simpler and more natural

to reason about. Similarly, some find it easier to visualize and mentally manipulate

rows and columns of data, thus finding languages like R, Matlab, and libraries like

Numpy easier to understand. Some anecdotally find functional languages easier to

comprehend than others.

While the explanations for the underlying processes were not clear, it was clear

that in order to solve this puzzle, it was necessary to address the behavioral factors

that underlie comprehension. Further, it suggested room for rigorously defining ideas

like visual learners and easier to reason about in this context.

This observation also raised questions about the different code models proposed

in the literature. The accuracy of code models at tasks such as summarization and

predicting tokens were not as high as at tasks in language processing. Was this because

training code models on tasks that were not HITs inherently harder? Understanding

the brain and behavioral bases of comprehension would hopefully inform how we could

improve training computational models to perform code reasoning tasks.

Around the same time, Siegmund et al. [2014] published their influential study

on using fMRI to study programmers’ brains. This provided additional support for

the potential to study and establish the behavioral foundation for comprehending

31

Figure 1-1: Excerpts from an email conversation with Prof. Harish Karnick, Emeritus
Fellow, IIT Kanpur, on the possibility of studying the brain bases of programming, circa
August 2017.

32

code. Shown in Figure 1-1 is my conversation on this topic with Prof. Harish Karnick,

Emeritus Fellow at Indian Institute of Technology Kanpur (IITK)1, just before I

started graduate school.

1.2 Puzzle 2 - Programs and patterns

Around the same time as I was asking these questions, I came across a now prominent

work on the naturalness of software by Hindle et al. [2016]. The authors analyzed

code in the wild—available in public software projects, open-source repositories

etc., and showed the frequency distribution of the tokens and phrases (collection of

tokens) appearing in code corpora followed a Zipf-like distribution. This frequency

distribution is obtained by first computing the frequency of all the unique tokens across

all programs appearing in a corpus, and then plotting these frequencies in a ranked

(usually descending) order. Figure 1-2 shows an example of a Zipf-like distribution.

Figure 1-2: A Zipf-like distribution. For language, the X-axis represents unique words
or phrases appearing in corpora of text, and the Y-axis the frequencies corresponding to each
of those words/phrases occurring in the corpora. Image source: Wikimedia Commons

The authors found this distribution to hold irrespective of the programming

language itself: the distribution of tokens in corpora across languages like C, Java,

Python each showed a similar distribution. Word frequencies from corpora of text

have long been shown to follow a Zipf-like distribution [Piantadosi, 2014]. Such a

statistical regularity of words and tokens has been used in applications such as data

compression [Schwartz, 1963], and cryptography [Boztas, 1999]. Hindle et al. [2016]

1https://iitk.ac.in/new/dr-harish-karnick

33

propose similar applications for code that can make use of such regularity, such as

code auto-completion, code summarization, and more.

While the reason for the occurrence of this particular distribution is currently not

well established, one popular account attributes it to a communicative optimization

principle [Piantadosi, 2014]. According to this principle, the task of speaking and

writing text is considered to have been evolved to optimally facilitate communication.

The principle suggests any communication language will exhibit a statistical regularity

that helps maximize its successful reception. In light of this principle, the results from

Hindle et al. [2016], which had also been reported in previous studies [Shooman and

Laemmel, 1977, Clark and Green, 1977, Chen, 1991], remain particularly puzzling.

For one, the distributions are similar despite the many differences in the grammar and

the execution semantics of programming languages and natural languages. Further,

the communication recipient in the case of code is an assembly-level, register-based

execution model. Why do humans then produce code with a Zipf-like token distribution

when communicating with a machine that has been invented by humans?

Could it follow that our minds—our consciously aware perceptions and thoughts

[Shiffrin et al., 2020]—use some mechanism which naturally constrains the way we

express communicative thought? What is an analytic description of this mechanism?

As a corollary, when understanding code, do our minds inherently expect this distri-

bution? How we might is unclear. Bicknell and Levy [2012], Malmaud et al. [2020]

propose a probabilistic framework to explain text understanding. Does a similar

probabilistic account explain code understanding? Importantly, are code models

encoding this probabilistic mechanism, thus giving them the ability to reason about

the communicated intent in programs? These were the open questions motivating me,

which I attempt to investigate in this thesis.

1.3 Reconciling these puzzles - Questions that arise

These two puzzles inform the theme of the questions I explore in this work. Reconciling

the questions raised by the puzzles, I ask the following questions, which lie at the

34

intersection of computational models of code understanding and human behavioral

bases of code understanding.

• Thesis Question 1: Computational perspective. To start with, what is a

good framework to evaluate code models’ understanding of programs. Code models

are either supervised—trained to infer a specific task like code summarization, type

inference, etc.; or unsupervised—language models trained on code corpora. Further,

these models are typically trained either on source code or, as I propose, can be trained

on execution traces of programs.

• Thesis Question 2: Cognitive neuroscience perspective. Similarly, what is

a good framework to understand how code comprehension happens in our brains and

minds. Brain refers to the neurons, cells, and chemicals that govern activities of an or-

ganism. Mind is often considered consciously aware perceptions and thoughts [Shiffrin

et al., 2020].

• Thesis Question 3: Bridging the two perspectives. Is there any corre-

spondence between the information encoded by code models and human brains when

comprehending programs? Can computational models help in learning how our brains

and minds comprehend programs? Can our brain and minds inform the better design

of computational models?

In the following section, I describe how the chapters in this thesis correspond to

these key research questions.

1.4 Thesis map

I develop multiple ideas to address each of the three questions introduced in Section

1.3. Each idea has been described as a separate chapter in this thesis. I motivate the

relevance of each idea and summarize key results here. I also describe how these ideas

contribute to addressing the three broader thesis questions.

Figure 1-3 summarizes the key themes of the different chapters in this thesis, and

shows how they relate ontologically.

35

Figure 1-3: Thesis map. The three verticals correspond to the three broad thesis questions
I introduce in Section 1.3. Each box describes the theme of one chapter in this thesis. The
bridge chapters inform and are informed by ideas from chapters in both - the computational
and cognitive neuroscience verticals. The arrows indicate these relationships.

Thesis Question 1. Computational perspective

Chapter 2. Testing the robustness of code model understanding using

source code modifications.

I propose a principled method to test how well models trained on source code under-

stand programs. The key idea is that humans’ understanding of code is not affected by

minor changes made to the code. We hold code models to the same test. For example,

a model’s output should not be affected by a variable being consistently renamed from

x to y. The proposed method attempts to find such small changes which (a) do not

alter the semantics of the original program, but (b) change the model’s output. If

such minor modifications are easy to find, it demonstrates the brittle understanding

these models have of programs. I formulate finding such minor modifications as a

first-order optimization problem. The optimization solves for two key components:

which parts of the program to transform, and what transformations to use. I show

that it is important to optimize both these aspects to generate the best candidate

changes which are minimal and can flip a model’s decision. Although I evaluate this

36

method on Python and Java programs, the proposed method is independent of the

model (supervised or unsupervised), or the languages the models are trained on.

The details of this method are presented in chapter 2. It is, in full, a reprint of

Generating adversarial computer programs using optimized obfuscations. Srikant, S.,

Liu, S., Mitrovska, T., Chang, S., Fan, Q., Zhang, G., and O’Reilly, U.M. (2021).

ICLR 2021. [Srikant et al., 2021]

Chapter 3. Improving the robustness of code model understanding while

retaining model accuracy

In this work, I propose improving the baseline understanding of code models that I

test and measure in chapter 2.

I separately address two types of models - unsupervised code models (language

models) and supervised, fine-tuned models. For unsupervised models, I provide a

constrastive learning setup to learn those properties which humans can naturally

reason about when comprehending code, such as invariance to variable names. For

supervised models, I identify the existence of a sweet-spot in the frequency of updates

made to the model parameters when being updated to learn the different human-like

properties.

I show that these two solutions bring models closer to what humans can reason

about when comprehending code.

I describe this work in Chapter 3. It is, in full, a reprint of CLAWSAT: Towards

Both Robust and Accurate Code Models. Jia*, J., Srikant*, S., Mitrovska, T., Chang,

S., Gan, C., Liu, S., and O’Reilly, U.M. (2023). SANER 2023 [Jia et al., 2022]. Jinghan

Jia contributed equally with me as a primary author in this work.

Chapter 4. Learning code models to understand concurrent programs using

program execution traces.

Of the several applications and developer tasks which code models can learn and assist,

tasks that reason about concurrent programs have been studied the least [Allamanis

et al., 2018a]. In this work, I describe how code models can learn to understand

37

concurrent programs, and specifically reason about data races.

I first propose a theoretical formulation for an ML model to learn data races. I

discuss how operationalizing this idea is challenging. I then study the limits of neural

networks architectures in learning and detecting data races from execution traces. I

model events appearing in a program thread as a string of characters in a toy language

that I design. Using such a language to denote threads, I study how well different ML

models can be trained to detect the presence of specific substrings in the toy language

that represent data races.

I then attempt to learn ML models on the execution traces of real concurrent

programs. In my attempt, I learned the following severe limitations in prior work:

• No comprehensive dataset of concurrent programs exists in which data race condi-

tions have been clearly labeled. Such a dataset is essential to get started with any

ML-based approach.

• Data race detection algorithms proposed over the last four decades have not been

evaluated on such comprehensive, labeled datasets. Instead, they have typically

compared their performance to other prior algorithms and have reported only relative

improvement. It is thus unclear how accurate these different algorithms are.

We develop RaceInjector to address this issue of a lack of a comprehensive dataset,

which uses a Satisfiability Modulo Theories (SMT)-based solver to generate multiple

possible traces which contain an injected data race. This generates a dataset of traces,

wherein each trace is guaranteed to contain a data race. Such a dataset is suitable as

a benchmark to rigorously evaluate other data race detection algorithms, and train

ML models to detect data races.

I describe this work in Chapter 4. Section 4.2 describes the theoretical formulation.

Section 4.3 refers to a thesis I mentored, authored by Teodor Rares Begu: Modeling

concurrency bugs using machine learning. Rares Begu, T., Srikant, S., and O’Reilly,

UM (2020). MIT SuperUROP Thesis [Rares Begu, 2020]. Section 4.4, in full, is

a reprint of RaceInjector: Injecting Races To Evaluate And Learn Dynamic Race

Detection Algorithms. Wang, M., Srikant, S., Samak, M., and O’Reilly, U.M. (2023)

Wang et al. [2023].

38

How the chapters contribute to the computational perspective.

• Chapter 2. Humans can understand code despite simple changes made to it. Can

models do the same? The method proposed in this work uses this idea, and serves as

a practical baseline test of how well code models understand code.

Given how general our formulation is, we also show its application in generating

English sentences that can elicit specific neural responses in the brain (details in

Chapter 7).

• Chapter 3. This work identifies ways to fix the brittleness in code model

understanding which the method from Chapter 2 identifies.

• Chapter 4. This work takes the first step towards training code models to

comprehend and reason about concurrent programs. It specifically develops a way

forward for designing data-driven data race detectors, which can potentially improve

upon the heuristics that have been proposed over the last four decades. To the best of

my knowledge, no previous attempts have been made in this regard.

Thesis Question 2. Cognitive neuroscience perspective

Chapter 5. In this chapter, I identify the regions of our brains involved in code

comprehension. We consider two candidate brain systems—the Multiple Demand

(MD) system and the Language system (LS). While the MD system is known to

respond to stimuli involving general problem solving, math operations, and logic

operations, the LS is known to be sensitive to language inputs alone. We establish

whether reading and comprehending programs activates the LS or the MD system by

using fMRI to study brain activity in participants reading code. We find that the LS

does not consistently respond when comprehending programs, while the MD strongly

does.

This chapter, in full, is a reprint of the arXiv report Srikant et al. [2023a]. The

report is a rewrite of Comprehension of computer code relies primarily on domain-

general executive brain regions. Ivanova, A. A., Srikant, S., Sueoka, Y., Kean, H. H.,

Dhamala, R., O’Reilly, U.M., Bers, M. U., and Fedorenko, E. (2020). Elife, 9:e58906

39

[Ivanova et al., 2020]. The chapter informs the results of the eLife work to a computer

science audience; the original eLife work was written to primarily inform a cognitive

neuroscience audience.

How the chapter contributes to the cognitive neuroscience perspective.

This work establishes the regions of the brain most responsible for code comprehension.

Knowledge of the functional regions of the brain involved in code comprehension

allows us to probe more into the nature of information represented (stored) in these

brain regions.

Thesis Question 3. Bridging the two perspectives

Chapter 6. Mapping brain and model representations

In this work, I attempt to describe the nature of information encoded in the different

brain regions identified in Section 1.4. This gives us an insight into the division of

labor during code comprehension. For instance, token-related information can be

encoded more prominently in Language system (LS), but, say, loops can be encoded

in the Multiple Demand (MD) system. Similarly, numbers-related processing can

happen in the MD while strings-related processing happen in the LS.

In addition to understanding this division of labor, our approach of decoding

program-related information the first step at establishing the bases of the MD system.

The MD system has typically been associated with fluid intelligence, but no description

exists of fluid intelligence. Thus, the nature of operations performed in the MD system

have not been rigorously described. Programs are a natural way to describe tasks that

resemble problem-solving and general intelligence [Newell et al., 1958]. Newell et al.

[1958] were the first to propose how tasks requiring some form of problem-solving can

be described using computer programs. Thus, if information from programs are well

encoded in the MD system (as opposed to the LS), it provides initial evidence to the

bases of the MD system.

Additionally, I test whether information encoded in the brain can predict repre-

40

sentations (embeddings) learned by code models. A strong correspondence between

the two representations—of brain regions and code models—would suggest that the

learning objective used by code models to learn the parameters of the models re-

sembles that employed by our brains, which thus result in the emergence of similar

representations.

We show that the program-related information is encoded both in the MD and

Language systems. Execution-related properties are more strongly encoded in the MD

system. We find that representations from more complex models tend to align best

with the MD system than the LS.

I describe this work in Chapter 6. It is, in full, a reprint of Convergent repre-

sentations of computer programs in human and artificial neural networks.

Srikant*, S., Lipkin*, B., Ivanova, A. A., Fedorenko, E., and O’Reilly, U.M. (2022).

NeurIPS 2022 [Srikant et al., 2022]. Ben Lipkin contributed equally with me as the

primary author of this work.

Chapter 7. Generating stimuli for cognitive neuroscience and psycholin-

guistics

Experiments in psycholinguistics and the cognitive neuroscience of language rely on

linguistic stimuli (sentences) which either possess specific linguistic properties or which

target specific cognitive processes. Such stimuli are generally assembled using manual

or semi-manual methods, limiting their quality, quantity, and diversity.

I show how the method I propose in Chapter 2 can be reformulated to automate

the generation of stimuli which target specific cognitive processes or possess desired

linguistic properties while not being subject to experimenter biases which may arise

from manual methods.

I describe this work in Chapter 7. It is, in full, a reprint of GOLI: Goal-Optimized

Linguistic Stimuli for Psycholinguistics and Cognitive Neuroscience. Srikant, S.,

Tuckute, G., Liu, S., and O’Reilly, U.M. (2023) [Srikant et al., 2023b].

41

Chapter 8. What is important to programmers when comprehending code?

Soloway and Ehrlich [1984] and Wiedenbeck [1986] proposed the presence of beacons

in programs: substrings in a program which programmers deem important to their

understanding of the program. In this work, I verify whether common factors known to

affect the comprehension of text such as surprisal and word length, and whether code

model’s representations can predict the behavioral finding by Wiedenbeck [1986]. The

motivation is to determine the factors influencing programmer notions like "important

part of the code", "confusing part of the code", and other such vaguely defined terms

typically used by programmers.

I conduct a behavioral experiment in which I find the model’s representations to

be good predictors of the importance of a token in a program’s overall comprehension,

while the surprisal of a token as a signal is a weak predictor. I describe this work in

Chapter 8.

How the chapters contribute to bridging the two perspective.

• Chapter 6.

– Our work is the first to describe the nature of program-related information encoded

in the two brain regions most closely associated with code comprehension—the Multiple

Demand system and the Language system.

– We take the first steps in describing the foundations of the MD system. Programs

are a natural way to describe problem-solving tasks, which the MD system is believed

to specialize in.

– We show a weak correspondence between the representations of a program in the

brain and in code models. Future work may try to improve the architecture of current

code models to improve this correspondence [Srikant and O’Reilly, 2021].

• Chapter 7. This work shows how experiment stimuli can be generated that

satisfy diverse goals. This utility of this method was recently demonstrated in Tuckute

et al. [2023], which establishes the ability to noninvasively control neural activity in

higher-level cortical areas, like the language network.

42

While we do not demonstrate the generation of code stimuli in this work, the method

can be used to similarly learn more about the sensitivity of the MD and Language

system to the presence of specific code patterns.

• Chapter 8. I show how language models of code, when used as proxies of expert

programmer knowledge, can help study different behavioral responses seen when

understanding code.

1.5 Software

Software repositories relevant to the chapters presented in this thesis:

• Chapter 2. https://github.com/ALFA-group/adversarial-code-generation

• Chapter 3. https://github.com/ALFA-group/CLAW-SAT

• Chapter 4. https://github.com/ALFA-group/RaceInjector-counterexamples

• Chapter 5. https://github.com/ALFA-group/neural-program-comprehension

• Chapter 6. https://github.com/ALFA-group/code-representations-ml-bra

in

• Chapter 7. https://github.com/alfa-group/goli

• Chapter 8. https://github.com/ALFA-group/beacons-in-code-comprehensi

on

43

